ProviewR

OPEN SOURCE PROCESS CONTROL

Designer's Guide

2024-02-26
Version 6.1.5

Copyright (C) 2005-2025 SSAB EMEA AB

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts.

Introduction

ProviewR is a modern, powerful and general process control system. It contains all functions
normally required for successful sequential control, adjustment, data acquisition,
communication, supervision, etc.

The configuration of a ProviewR system is done graphically, making the application adaptation
simple, reliable, and flexible. ProviewR is a distributed system, which means that the system
consists of several computers, connected via a network . Via the network, computers exchange
data with each other. In this way, for instance, the measuring signals will be known on all

the process- and operator stations of a ProviewR system.

A ProviewR system is defined with objects. Each object represents a physical or abstract
entity in the system. The objects are structured in hierarchical tree structures, making it
possible to describe the system in a structured way. The tree structure also imposes a
hierarchical naming of all objects. By carefully choosing names when configuring a system,
the full name of an object will identify its function, or role in the system.

The hierarchies are divided into two groups; one called the Plant Configuration, describing

the logical view of a system; and one called the Node Configuration, describing the physical
view of the system. The configuration of these two parts can be done independently. Eventually
the two parts are connected to each other.

To configure a system you use the ProviewR Workbench. The workbench comprises a permanent
database and a number of tools to help you configuring the objects needed to define the

system. From the workbench you create a runnable system as well as documentation about the
system.

The purpose of ProviewR is to help you with creating automated systems. Suppose you have a
process that you wish to control, ProviewR helps you creating the control system for this
process. When the system is created, you will find that you have also created the
documentation for the system.

Overview

As this is a guide for designers, we start with a description of what the design of a
control system implies. The description can also work as an introduction to the different
concepts that are used in this guide.

A designer's starting point is, of course, the process that is to be controlled by the system,
and the first task is to learn about the process and to figure out the best way to control

it: what control loops are needed, what interlockings, how is the startup and shutdown
carried out, how are operators and maintainers going to work with the system. This is
summed up in a Design specification.

At the same time you have to consider what information about the process the control system
needs to perform its task, i.e. which sensors should be placed in the plant. The control

system also has to influence the process in various ways, for example with valves and engines.
This ends in a Signal list, that is a list of all input and output signals of the system.

At this point the question of which control system is to be used is raised, and one alternative
is of course ProviewR. You also have to decide which I/O-system to use and how to divide the
function among the different process stations.

IO-systems

The task of the I/O-system is to bring signals from the process to the control system, and to
put out signals to influence the process. The signals are usually digital or analog, but

there are also other types as integers and counters. You can choose between a rack and card
system connected to the process station, or distributed 1/O, e.g. profibus.

Configure the system

When it's time to start to configure the system, you first create a new project in the
Administrator. The Administrator is a tool for creating order among all the projects, as there
can be plenty of them in time.

The configuration of a system is mainly done by creating objects in a database, the Workbench.
There are a large amount of objects to configure everything from I0-channels to PLC programs.
The ProviewR Object Reference Manual contains over 800 different types of objects. The objects
are placed in a tree structure, and you use a tool called the Configurator to create objects and

to navigate in the object tree.

The object tree is divided in two parts, the Plant hierarchy and the Node hierarchy.

The Plant hierarchy reflects the different functions in the plant and in the process, while

the Node hierarchy reflects the hardware of the control system, with computers, 1/0-racks and
I/O-cards.

When the control system is started later in runtime, a copy of the object tree is created in
a realtime database, rtdb. The transfer from the Workbench to rtdb is done with so called
loadfiles, files that are generated from the Workbench and contain all its objects.

Control program

ProviewR offers a graphical programming language in which logic, Grafcet sequences and control
loops are programmed. It is named the PLC program. Also the PLC program is a part of the object
tree. It is configured by placing specific program objects, PlcPgm, in the Plant hierarchy.

When opening a PlcPgm you enter the Plc Editor, in which the graphical programming is preformed.
Function blocks are created, and connected in a signal flow of digital and analogous signals,

where the input signals are fetched at the left side, transformed in different function blocks,

and finally stored in output signals at the right side.

A complement to the PLC program are application programs, that are written in the ¢, c++ or
java language. Applications are written and started as separate programs and connected to
the realtime database through an API.

Simulation

The realtime database, the PLC program and possible applications kan easily be started in the
development station. This makes it possible to test the programs in direct connection with

the programming. You can even write special simulation programs which read the output signals,
simulate the outputs influence of the process, calculate values of different sensors and put

these values in the input signals.

The configuration and programming of the system is then a process where you switch between
configuring/programming and testing. The result is carefully debugged programs and a fast and efficient
commissioning of the plant. It also results in better programs, and more thoroughly worked

through functions, because the feedback is greater in the creating process than the construction

of a process control system implies.

At the simulation and commissioning it is of great importance to have access to tools that
makes it possible to monitor and examine the system, and quickly localize possible
malfunctions. In ProviewR this tool is called Xtt. Xtt contains a lot of functions to examine
the content of the realtime database, to flow the signal flow, to log fast or slow sequences,
etc.

Operator interface

There are a number of different groups of professionals that shall gain access to the system,
operators running the plant on a daily basis, maintainers occasionally correcting some
malfunctions, process engineers requesting various process data. All have their demands on the
system interface. Furthermore the limits between the various groups of professionals might be
fluid, operators that are both operators and maintainers, and perhaps even process engineers.
This puts high demands on the functionality and flexibility of the operator interface. You

can rapidly and easily trough so called methods that are activated from popup menues fetch all the
information of various objects that are stored in the realtime database, or in different server
systems.

Process graphics

Process graphics are built in a graphical editor. The graphics are vector based, which makes all
graphs and components freely scalable. Components have a preprogrammed dynamic to change
color and shape, depending of signals in the realtime database, or to respond to mouse clicks
and set values in the database. In each component that is sensible to mouse click or input,

you can state access, and selectively allow or hinder users to influence the system.

Supervision

If any malfunction arise in the system, the operator has to be noticed. This is done with
special supervisory objects that are configured in the plant hierarchy or in the PLC program,
and that originate alarms and events. The alarms have four priority levels: A, B, C and D,
and are displayed to the operator in the alarm list, the event list and the historical event list.

The alarmlist contains unacknowledged alarms and alarms in alarm state. An alarm normally has
to be acknowledged before it disappears from the list. If the alarm state is active, the alarm
remains in the list as long as it is active.

Alarms are also registered in the event list, that displays events in a chronological order.

The historical eventlist is a database, also registering events. Here you can search for events,
stating criteria as priority and process part.

If a plant part is shut down, it is possible to block the alarms to avoid to distract the
operator. Blocked plant parts are displayed in the Block list.

Data Storage

You often want to follow the change of a signal over time, in the shape of a curve. In ProviewR
there are three kinds of functions for this, DsTrend, DsFast and SevHist.

DsTrend is a trend that is stored in the realtime database. The value of a signal is stored
continuously with an interval of 1 second and upwards. For each curve there is space for about
500 samples, so if you choose to store a new sample every second, you have a trend of the
signal of about 8 minutes.

SevHist stores signals in a similar way in a database on disk, which makes it possible to store
values a longer period of time than DsTrend.

DsFast stores more rapid sequences, where the storage is started on a trigger condition, and
continues a specified time. When the sequence is finished, it is displayed as a curve.

A

4.1

4.2

Database structure

As we have seen earlier, the main part of the configuration of a ProviewR system is taken place
in a database, the Workbench. In the Workbench you create objects in a tree structure, and
every object arise a certain function in the control system. ProviewR is so called object
oriented, so let us look a little closer at what a ProviewR object really is.

Object

An object consists of a quantity of data, that in some way defines the state of the object or

the properties of the object. The data quantity can be very simple, as for an And-gate, where

it consists of a boolean value that is true or false. However, a PID controller has a more

complex quantity of data. It contains gain, integration time, output, force etc. It consists

of a mix of digital, analogous and integer values. Some values are configured in the development
environment and some are calculated in runtime.

The quantity of data is called the body of the object. The body is divided in attributes, where
every attribute has a name and a type. The body of an And-gate consists of the attribute Status
which is of type Boolean, while the body of a PID controller consists of 47 attributes: ProcVal,
SetVal, Bias, ForceVal etc.

All PID objects have their quantity of data structured in the same way, you say they are a member
of the same class. The PID objects are members of the PID class, and the And-gates are members
of the And class. A class is a kind of model of how objects that belong to the class appear,

for example what the attributes are, and the name and type of the attributes.

Besides a body, an object also has a header. In the header, the class and identity of the
object is found, and also its relation to other objects. The objects are ordered in a tree
structure, and in the header there are links to the parent, and the closest siblings of the
object.

Volumes

When configuring a system, and creating objects, you usually know which node the objects
will belong to in runtime. You could group the objects after which node they will belong to,
but a more flexible grouping is made, so instead you group the objects in volumes. A volume
is a kind of container for objects. The volume has a name and an identity, and it contains

a number of objects ordered in a tree structure.

There are a number of different types of volumes, and the first you get in contact with is

a root volume. When configuring a node, you usually work in a root volume. Every node is
connected to a root volume, i.e. when the node is starting up in runtime the root volume,
and its objects, are loaded into the node. Below is a description of the different types of
volumes.

RootVolume

A root volume contains the root of the object tree in a node. At startup, the node is loading

4.3

the root volume.

A node is connected to one and only one root volume. Furthermore, a root volume can be loaded
into several nodes. When a process station is running in production, the same volume can
concurrently be loaded into a development station for simulation, and a third node can run

the volume in educational purposes. Though, you have to consider that the nodes have to run

in different communication buses.

SubVolume

Some of the objects in a node can be placed in a subvolume. The reason to divide the objects
of a node in a root volume, and in one or several subvolumes could be that a number of persons
have to configure the node simultaneously, or that you plan to move parts of the control of

some plant parts to another node later.

ClassVolume

The definition of different classes reside in a special type of volume, called ClassVolume.
Here the description of a class is built with objects that define the name of the class
and the attributes of the class.

There are two classvolumes that you always include in a ProviewR system, pwrs and pwrb. pwrs
contains the system classes, mainly classes used in class definitions. pwrb contains base
classes, i.e standard classes that are needed to build a process or operator station.

DynamicVolume

A dynamic volume contains dynamic objects, i.e. volatile objects created at runtime. If you
have a material planning module in the system, an object is created for each material that
is processed in the plant. When the processing is completed, the object is removed.

SystemVolume

The system volume is a dynamic volume that resides in every node, and that keeps various
system objects.

DirectoryVolume

The Directory volume only exists in the development environment. Here the volumes and nodes of
the system are configured.

Volume Identity

Each volume has a unique identity, that is written with four numbers, separated by periods,
e.g. " V0.3.4.23". The prefix _V states that it is a volume identity. To verify that the volume
identities are unique, there is a global volume list that contains all volumes. Before creating
a project, the volumes of the project should be registered in the volume list.

Attribute

The quantity of data for an object is divided into attributes. Each attribute has a name and a
type. Here follows a description of the most common attribute types.

4.4

Boolean

Digital attributes are of type boolean. The value can be true (1) or false (0).

Float32

Analogue attributes are of type Float32, i.e. a 32-bit float.

Int32

Integer attributes are usually of type Int32, i.e. a 32-bit integer. There are also a number
of other integer types, e.g. Int8, Int16, Int64, UInt8, UInt16, UInt32 and UInt64.

String

In a string attribute a character string is stored. There are different string types with
various length, e.g. String8, String16, String40, String80, String256.

Time

Time contains an absolute time, e.g. 1-MAR-2005 12:35:00.00.

DeltaTime

DeltaTime contains an delta time, e.g. 1:12:22.13 (1 hour, 12 minutes, 22.13 seconds).

Enum

Enum is an enumeration type, used to choose one option of several alternatives.

It can be assigned one integer value, in a series of integer values, where each value is
associated with a name. There are, for example, the enumeration ParityEnum which can have the
values 0 (None), 1 (Odd) or 2 (Even).

Enum is a basic type and ParityEnum is a derived type.

Mask

Mask is used when choosing one, or several, of a number of alternatives. The alternatives
are represented by the bits in a 32-bit integer.

An attribute can also consist of a more complex data structure. It can be an array with a
specified number of elements, and it may also be another object, a so called attribute object.

Class

A Class is a description of how an object that is a member of the class shall look like. An
object that belongs to the class is called an instance. The class defines how the data of the
instances are structured in attributes of various types, or the graphic representation of objects
in the PLCeditor or in the operator environment.

Each class has a template object, i.e. an instance of the class that contains default values
for the attributes of the class.

ProviewR's base system contains about 1000 classes. See Object Reference Manual for detailed
description. The designer can also create his own classes within a project.

4.5

4.6

4.7

4.8

Object Tree

The objects in a volume are ordered in a tree structure. In the volume there is one, or several
top objects, each top object can have one or several children, that can have children etc.
You usually talk about the relations between objects in the tree in terms as parent, sibling,
child, ancestor and descendants.

Object Name

Each object has a name that is unique within its sibling family. The object also has a path name
that is unique within the world. The path name includes, besides the object name, the volume
name and the name of all the ancestors, e.g

Vol TrafficCrossl: Traf fi cCrossl- Control Si gnal s- Reset

If you want to be more specific and point out an attribute in an object, you add the attribute
name to the object name with a period between, e.g.

Vol TrafficCrossl: Traffi cCrossl- Control Si gnal s- Reset. Act ual Val ue

Also an attribute can have several segments, since an attribute can consist of an object. The
attribute name segments are separated by periods, e.g

Vol Traf fi cCrossl: Hydr - Val ve. OpenSw. Act ual Val ue

Mounting

An operator station has to display values of signals and attributes that reside in the volumes

of process stations. This is achieved by a mechanism where an operator station mounts the
volumes of the process stations in its own object tree. A mounting means that you hang an
object tree of another volume in the own root volume. Where in the tree the volumes are hung,
is configured with a MountObject object. The MountObject states which object in the other
volumes that is mounted. The result is, that the MountObject is displayed as the mounted object,
with the object tree beneath it. It apparently looks as if the objects belong to the own root
volume, while they in reality reside in another node.

If you use sub volumes, they also have to be mounted in a root volume to make the objects
available.

When you choose mounting points and names of mounting points, it is suitable to do this in such a
way that the objects have the same pathname in both volumes.

Object ldentity

An object has an identity that is unique. It consists of the volume identity, and an object index
that is unique within the volume. An object identity is written for example "_00.3.4.23:34" where
0.3.4.23 is the volume identity, and 34 the object index. The prefix _O states that it is an

object identity.

A Case Study

In this chapter we will give you an idea of how a ProviewR system is created. The process to
control is very simple in this case study - an intersection with four traffic lights - but it
will give you an idea of the steps you have to go through when creating a ProviewR system.

The traffic lights should be able to operate in two different modes:

- Normal: The traffic lights run normal cycle of red, yellow and green.
- Flash: The traffic lights are flashing yellow.

_ W E
Light NS Light WE

9 S

— e

Light WE Light NS

Fig Traffic lights in an Intersection

The operating mode of the traffic lights is decided by an operator via an operator station, or
by a maintenance technician who influences a switch. The maintenance technician can change
mode only if the operator has switched the traffic lights to service mode.

Figure Traffic Lights, Control Panels' shows the different switches and indicators needed by
the operator and maintenance technician respectively to be able to monitor and control the
system. These could be realized with plant graphics on the operator station or with hardware.

5.1

Operator Maintenance technician

Operating mode Control Operating mode Control
O O O O
Marmal service Mormal Service
Flazh Marmal Ciperator Service Flash Marmal

ﬂﬁﬂ ﬂﬁﬂ- & &

Fig Traffic Lights, Control Panels

Specification of 1/0

We start with analysing the task to decide what hardware to use.

Digital Outputs

We have four traffic lights, but the traffic lights in the same street can be connected in
parallel, which means that we can treat them as two lights.

Three outputs per light: 2*3 =6
Indication: Operating mode 1
Indication: Control 1

Total number of digital outputs: 8

Digital Inputs

The only digital input needed is for the maintenance technician's switch. The operator controls
the process from the computer display, and this requires no physical signals.

Switch: Operating mode 1

Total number of digital inputs: 1

Analog I/O

No analog in- or outputs are needed for this task.

Specification of the Process Station

When we have decided upon the I/O needed, we can choose the hardware. We choose:

5.2

1 Linux PC with rack
1 card with 16 digital inputs
1 card with 16 digital outputs

Specification of the Operator Station

1 Linux PC

Specification of Plant Graphics

We need a display from which the operator can control and survey the traffic lights.

Administration

First we have to register a new volume, create a project, and, if necessary, create new users.
For this we need:

- A name for the project. We call it trafficcross1.
- Two volumes, one for the process station and one for the operator station.
- We need three users: one developer, one operator and one maintenance technician.

Volumes, projects and users are registered and created in the administrator tool.

Register volume

For this project, we need two volumes, one for the process station, and one for the operator
station. They are root volumes so we can choose an idle volume identity in the interval
0.1-254.1-254.1-254. We choose 0.1.1.1 to the operator station and 0.1.1.2 to the process
station, and enter the volume mode in the Administrator to register these volumes.

il PwR Global ¥olume List B _|ol x|

File Edit Functions Wiew Options Help

| Z| |0y | T | |0 D] A5k

= Traffic $Hier
VolTrafficCross1 VolumeReg
& VolOpTrafficCross1 VolumeRey

|»]

Kl]

Fig Volume registration

Create users

Eric is a developer in the traffic department, an Carl is an operator. They are both involved
in all the projects at the traffic department, so we create a common systemgroup for all the
projects and let them share users. We grant Eric developer and system privileges, Carl
operator privileges and Lisa maintenance privileges.

i1 PwR User Database 10l x|

File Edit Functions Wew Options Help

AL E A I PN s ey

(= trafficdepartment SystemGroupReg =
& eHc UserRey
& cad UserRey
& lisa UserRey

Al [+]

Fig Created users

Create Project

We create the project with the hierarchy name 'traffic-trafficcrossl'.

i1 PwR Project List L =10l %]

File Edit Functions Wiew Options Help

FAEI = EA G PN ES Y [y

[0 Bases $Hier B
[~ Traffic %Hier
< trafficccross1 ProjectReq Trafficcross! (Proview road)

L]

Fig Created project

Configure the project

The project has a directory volume in which the nodes and volumes of the project are configured.

In the left window the volumes are configured with RootVolumeConfig objects. In the right

window the process and the operator station are configured with NodeConfig objects. The
NodeConfig objects is put beneath a BusConfig object that states in which QCOM bus the nodes are
communicating.

The NodeConfig objects contains

- Nodename
- ip address of the node

Below each NodeConfig object there is a RootVolumelLoad object that states the volume to load
at runtime startup.

Note also the system object with the attribute SystemGroup that is assigned the value
‘trafficdepartment’. This grants the users eric, carl and lisa access to the project.

%1 PwR MNavigator Directory eric on trafficcrossl i |I:||5|
File Edit Functions W\iew Options Help

< VolOpTrafficCross1 RootVolumeConfiy Operator Stﬂﬁlz = Pr BusConfiy Production communication bus Z
<% VolTrafficCross1 RootVolumeConfiy Process station v = crossl HodeConfig Process station
% VolTrafficCross1 RootVolumeLoad
<8 Distribute Distribute
opcrossl HodeConfiy Operator station
% VolOpTrafficCross1 RootVolumeLoad
<8 Distribute Distribute
O Sim BusConfiy Simulation communication bus
@E System $System

= Description
systemMame trafficcrossi
systemGroup trafficdepartment

5.3

Fig The Directory Volume

Plant Configuration

Once the configuring of the project is done, next step is to configure the plant. The
configuration is done in the Configuration Editor. The plant is a logical description of the
reality, which is to be controlled and supervised.

The Process Station

The major part of the configuration is done in the volume of the process station, VolTrafficCross1.
This because all physical hardware is configured here (the 1/0), all the signals and the
PLC-programs that work with the signals.

The plant is structured hierarchically. Examples of levels in the plant can be plant, process,
process part, component, and signal. These are the logical signals represented by signal objects
which will be connected to physical channels.

Sometimes it can be difficult to configure each signal in an initial stage, but it must at any
rate be decided how possible signals shall be grouped.

The figure below illustrates how a plant has been configured. We see how signals have been
configured on different levels, and also how the PLC programs are configured in the plant.

Traffic Crossl DemoPlant
$PantHier $PantHier
I
[1
ProcessA ProcessB
$FantHier $HFantHier
I
[T 1
Common Sigh Fumi Fum?
$PantHier $PlantHier $PlantHier
| I
[1
EmergStop Control Sign ContolPgm
Di $PantHier PlcPgim
FumTemp
Al

Fig An Example of a Plant Configuration

We choose to call our plant TrafficCross1 and we decide on the following structure:

- Two traffic lights, each one consisting of a green, a yellow, and a red lamp. Since the
streets run north-south and west-east respectively, we call them TrafficLightNS and
TrafficLightWE. Each lamp requires a signal. These are digital output signals and are
called RedNS, RedWE, etc.

- A PLC program to control the traffic lights.

- A number of control signals to select operating mode and function. We choose to put them in

one folder, ControlSignals. The table below shows the signals required.

Figure shows the resulting Plant Configuration.

We choose to call our plant TrafficCross1 and decide the following structure:

Signal Name Signal Type
ServiceSwitch Di
OperatorSwitch Di
ServiceMode Di
ServiceModelnd Do

Mode Dv

Modelnd Do

Reset Dv

Function

A switch which the maintenance technician can influence to
change the operating mode.

A value which the operator can influence to change the operating
mode.

A value which the operator can influence to change the function
to service mode.

A signal which shows the maintenance technician that the progran
is in service mode.

Indicates whether the program is in normal or flashing mode.
Indicates whether the program is in normal or flashing mode.

A value which is used to reset the program to initial mode.

iXi PwR Navigator Yolume VolTrafficCross1, eric on traffice =10l =]
File Edit Functions Wiew Options
= TrafficCrossl $PlantHier -
(= TrafficlightNS $PantHier
% RedNS Do
& YellowHS Do
& GreenNS Do
[0 TrafficLightEW $PlantHier
(= ControlSignals $PantHier
% Reset Dv
& ServiceSwitch Di
<8 OperatorSwitch Dv
& ServiceMode Dv
& ServiceModelnd Do
& Mode Dv
& Modelnd Do I
[0 ControlPgm PlcPgm Ad|
Al 1+

Fig The Plant Configuration of the Intersection

As you can see we have a plant object at the topmost level, TrafficCross1 of the class
$PlantHier. We use other objects of class $PlantHier to group our objects. We also create an
object, which defines a PLC program, the ControlPgm object of the class PlcPgm .

The Operator Station

The configuration of the operator station is performed in the volume VolOpTrafficCrossl. In the
Plant side there is only a mount object, that makes the plant hierarchy of the process node
available in the operator station. We have mounted the topmost $PlantHier object,
‘TrafficCross1' with a MountObject with the same name.

5.4

=10l x|

File Edit Functions Wew Options Help
[0 TrafficCross1 $MountObject]
Al [+

Fig The Plant Configuration in the operator volume.

Node Configuration

When you have configured the plant, continue to configure the nodes.

Processtation

In this example we choose to start configuring the process station. We name the process station
"crossl". It is advisable to give the process stations descriptive names. In the node

hierarchy we create a $NodeHier object 'Nodes' and below, a $Node object ‘crossl' that
configures the node.

In the analysis phase we decided that the process station should consist of the following
hardware:

- 1 Linux PC

- 1 rack with 16 slots

- 1 card with 16 digital inputs (Di channels).

- 1 card with 16 digital outputs (Do channels).

The rack and the cards are configured in a manner much like what you would do physically. You
have a node, place the rack in the node, the card in the rack, and the channels on each card.

i1 PwR Navigator Yolume YolTrafficCross1, eric on tr 0] x|
File Edit Functions Wew Options Help
> Hodes $ModeHier 4|
[crossl $Hode Process station
% MessageHandler MessageHandler
% 10Handler I0Handler
1 PFc PicProcess
[Rackn Rack_55AB
= Did Di_DIx2
& 00 ChanDi
= Doa Do_HYDO32
00 ChanDo
& o ChanDo
& 02 ChanDo
& 03 ChanDo
& 04 ChanDo
05 ChanDo
& 06 ChanDo
& 07 ChanDo
& 08 ChanDo
Al [*]

Fig Node Configuration of the Process Station

We also configure the PLC program with a PlcProcess object, and below this, a PlcThread object
for each time base. We are content with one 100 ms timebase.

i1 PwR Navigator Yolume YolTrafficCross1, eric o -10] x|

File Edit Functions Wew Options Help
= Hodes $NodeHier «]
[crossl $Hode Process station
MessageHandler MessageHandler
& 10Handler IDHandler
[~ Hc PicProcess
& 20ms Pic Thread
[0 Rackd Rack SSAB
Kl [+

Fig Timebase configuration of the PLC program

Each object has a number of attributes that you may have to change. To give an understanding of

how to change attributes, some of the attributes in the PlcProcess object are edited below.

ixi PwR Navigator Yolume YolTrafficCross1, eric on trafficcrossi

File Edit Functions Wew Options Help

=10l x|

AR AT i PPN oY oY

] Plant ~l |® Hodes $MNodeHier
[Hode [crossl $Hode Process station
[AllClasses MessageHandler MessageHandler
& 10Handler I0Handler
[~ Hc PicProcess
$E 20ms Pic Thread
= ObjectMame 20ms
= p Description
= p Prio 10
&l » loProcess 1
[0 RackD Rack_SSAB

Ll BN ||l

[+

value = |D.2|

Fig Change of Attribute Value

Operator Station

The node hierarchy of the operator station is configured in the volume VolOpTrafficCross1.

Below the node object we find an OpPlace object that defines the operator place, and below this

a XttGraph object for the process graph of the operator station.

il PwR Navigator Yolume YolOpTrafficCrossi, eric un

File Edit Functions Wiew Options Help

=101 x|

= Hodes $HodeHier
= opl $Hode Operator station
“# MessageHandler MessageHandler
= Operator OpHMace
& Overview ¥ttGraph
& crossl $MountObject

[»]

L]

Fig The Node Configuration in the Operator Volume.

Connecting channels to signals

When you have configured the plant and the nodes, it is time to connect the logical signals to
the physical channels. Each logical signal in the Plant Configuration must be connected to one
channel in the Node Configuration; a Di to a ChanDi, a Do to a ChanDo, an Ai to a ChanAi and
an Ao to a ChanAo, etc.

You can see the connection as a representation of the copper cable between the components in the
plant, and the channel in the I/O rack. In the figure below there is a cable between the switch

and channel 0 in the Di-card. As the Di-signal ServiceSwitch is representing the switch and
Di-channel Di4-00 is representing the channel, we have to make a connection between these two
objects.

Plant Configuration Mode Configuration
Traffic Cross1 crossl
$PlantHier $Hode
[| | |
TrafficLightEW ControlSignals Rackl
$PantHier $PantHier Rack S3AB
| I
[|
ServiceSwitch Did Dod
Di Di_DIX2 Do HYDO3Z2
f‘l |
: [|
; 00 01
ChanDi ChanDi
Operator ; Service o i s

Fig Connection between a signal and a channel

il PwR Navigator Yolume YolTrafficCross1, eric on trafficcrossi

File Edit

Functions

\iew Options

Help

=10/]

G| 2| ®|@|d|&|6]o]a|x|a |26

[»]

L«]

J Mant || [TrafficCross1 $PlantHier [HNodes $HodeHier
[Hode [0 TrafficLightdS $PlantHier F crossl $Node Process stat
1 AllCla: [0 TrafficLightEW $PlantHier % MessageHandler MessageHandler
(= ControlSignals $PantHier & 10Handler I0OHandler
% Reset Dv O Pc PicProcess
(¢ ServiceSwitch Di | Open Object... Rackd Rack_S35AB
<8 OperatorSwitch Dv Help = Did Di DIX2
B ServiceMode DV | ol class <3
% zi;\:cewludelnd D[::u [0 Dos Do_HVDO32
& Modelnd pg | Comnect Graph
= 1 ControlPgm PicPg) Connect Trend
: o 4] Copy Selected Object » | v
Copy Selected Tree C
Move Selected Object »

5.5

Fig Connect a signal to a channel

PLC program

We use the Graphical PLC Editor to create PLC programs.

However first we must connect the PlcPgm object to a PlcThread object in the node hierarchy.
This states which timebase the PLC program is executed on.

i **+* TrafficCross1-ControlPgm - 10| x|

File Edit Search \iew Functions Mode Help

Gs|=|a|a|a]6]a] - |m]

' Flashing light sequence = | 1 Analog
50 1 Control

Initial step — 1 Drive
- = Edit
Start condition <% BodyText

Dy |Mede | Inv LL <% Document

Invo < DocUserl
<5 DocUser?

™ plodo [4f—---, <3 Frame

B : @ Point
bk <& Show Plcattr
<5 Text
5 Title
1 O Grafcet
1 31 Integer
o1 }—v Stobo | Vellows | Dos-o1 7 Logic
—lo | or2 4 - Stobo (1 HMps

VellowEw | oS -035

'] Other

[»]

B I

E

51

Yellow light

L]

Mo light 5 plods [4]—

Fig The Graphical PLC Editor

We will use the PLC Editor to create a sequential control program for the traffic lights. There
are two ways to solve the problem concerning the two operating modes for a traffic light,
normal and flash:

1. Use one Grafcet sequence with conditional branches, i.e. one branch for the normal operating
mode sequence and one for the flash operating mode sequence.
2. Use two separate Grafcet sequences with different start conditions.

Here we choose to use the second alternative. In chapter 4, Graphical PLC Programming a more
detailed description of Grafcet and sequential control can be found.

Grafcet programs are based on activating and deactivating a number of steps in sequence. In
linear sequences only one step at a time can be active. To each step you tie a number of orders
that are to be executed when the step is active. This can be e.g. to set (with a StoDo object)

a digital output signal, which turns on a lamp. The PLC programs thus control the logical
signals.

Initial step

Start condition

Dv | Mode

Inv

Inw0

150

Yellow light

No light

S0

51

stoDo

Yellow NS

Do5-M

stoDo

Yellow EW

Do3-05

52

Ord0
Orid1
Ori2
Ord3

Fig The Flashing Light Sequence

This is the sequence that will be executed when you want the lights to flash yellow.

The start condition for this sequence is inverted in relation to the start condition for the
normal operating mode sequence. This implies that the two sequences cannot execute at the same

time.

151

o4 }—T stoDo | RedHS | Dos-00
oWds | 120 |_-. —{ stoDe | RedEW | DoS-03
1
T
o6 StoDo | Redns | Dos-o0 |
ord? StoDo | Vellowns | Dos-01 |
! — stobo | RedEw | Dos-03 |
T
ovdé }—T Stubo | Greenis | Dos-oz |
ods [i20 |—--- — Stube | RedEw | Dos-u3 |
:
1
1
1
.
ordi0 StoDo | vellowns | Dos-o1 |
ordi1 StoDo | GreenNs | Dos-02 |
StoDo | RedEw | Dos-o3 |
o2 }—T StoDo | RedHS | Dos-00
ordis | 120 |—II —{ Stobe | RedEW | DoS-03
1
T
o4 StoDo | RedHS | Dos-00
ondis '. StoDo | RedEW | Dos-03
! StoDo | Vellowew | Dos-05 |
ordiE }—t StoDo | Redns | Dos-o0 |
odiz [i20 |—--- Stobo | GreeneW | Dos-oe |
:
1
T
oul1E stde | RedHs [Dos-oo |
oul19 Stube | Vellowew | Des-os |

StoDo

GreenEW | Dos-o6 |

Initial step
start condition e
- Huode

Both red =
:i___E

NS yellow, red

EW red s
S

M3 green

EW red 5
.

NS yellows, green

EW red 5
]

Both red 5
:i___ﬂ

H3 red

EW yellow, red 5
:1_] Ti0

M3 red

EW green *
:ﬂ___ 11

N3 red

EW yellow, green s10

Fig The Normal Sequence

The program for the normal operating mode is based on a traffic light following the sequence:

North-South West-East
1 Red Red
2 Red, Yellow Red
3 Green Red
4 Yellow, Green Red
5 Red Red
6 Red Red, Yellow
7 Red Green
8 Red Yellow, Green
9 Back to step 1

The program starts in the initial step. If the start condition is fulfilled, step S1 will

become active and the red lamps are turned on. After a certain time, step S1 will become
inactive and step S2 will become active, and a yellow lamp will also be turned on, and so on.
When step S8 has been active for a certain time, it will be deactivated, and the initial step

is once again activated.

Di | ServiceSwitch | Did-00 And Oor StoDv | Mode
Dv | ServiceMode —0 and1 oHl

Dv | Operatorswitch And

Dv | ServiceMode And?

Mode I -q Edge or ———| StoDv | Reset |

Edgel . or
—= Edge —
Edgel
Dv | Mode StoDo | Modelnd | Do5-06
Dv | ServiceMode H— StoDo | ServiceModelnd | Doa-07

Fig Trigger Signals
The program above shows the logic that controls different operating modes.

At the very top to the right you set the Dv signal "Mode". If this is set to a logical 1, the
sequence for the light's normal operating mode will be run, otherwise the sequence for flashing
lights will be run.

The Dv signal "Reset" will be set to a logical 1 during one execution cycle when the signal
Mode changes value. This implies that the two Grafcet sequences will return to the initial
step. The chosen sequence will be executed again when Reset is set to a logical 0.

The PLC programs you have created must be compiled before they can be executed on a process
station.

Plant Graphics

Plant graphics are often used as an interface between the operator and the process. Plant
graphics are created with the Plant Graphics Editor.

Hle Edit Fumctions Connections YWiew Help

Linewidth 1 % | Linetype 1 &

Testsize 12 # | Lucida Sans :':I Bald Gradient Glabe :
| @[e[R[R R [R] 9] @ [smsaeosls| [« o[4w p[<]

Q|a|o| | v| Ala| - |2|@ Q|a|@)|-e] § |G o | 2] 465
= E r;uncm: |-

SEER

o ndisimAomnd

ind&nimSouare
indFulzarAnund
nilPulsariauare

oona

IndRgurcTexstf romt
ndRcundTexthaar
ndkcundlangs
ndsoap

ndSquare
ndbquareTextfrent
ndSquareTeuthear
ndSquareLange
indfquaretMstalran
indlRsunabetaFram:

@

oOoOoooae o

11.38, 4.56

Fig The Plant Graphics Editor

Plant graphics can contain dynamics, which are connected to the logical signals, e.g.:

- Text that becomes visible when a signal reaches a certain value

- Graphical objects that change color when a signal reaches a certain value

- Graphical objects that become invisible when a signal reaches a certain value
- Graphical objects that move depending on the value of a signal

You can also place push buttons in the plant graphics, which the operator can use for changing
values of digital signals. To change analog signals you use an input entry field.

In our example we choose to make a plant graphics, showing a road crossing, where the traffic
lights (red, yellow, and green) are dynamic as shown in figure. How to create the plant
graphics is described in chapter 5 Creating Plant Graphics .

Fig The Plant Graphics for the Intersection

Create a project

Installation of development environment

Before you can begin to work with ProviewR you have to install the ProviewR development
environment. There are a number of packages for different Linux distributions available, and
if there is no package for the desired distribution you can also download the ProviewR source
and build from sources.

The installation package is named with the version number in the name, e.g. pwr47. This
makes it possible to install several versions side by side, which is an advantage when you
have plenty of projects in production running at different versions.

You will find more information about the installation on the Download page on www.proview.se.

setup script

At the installation the Linux user 'pwrp' with password ‘pwrp' is created. By logging in as
pwrp you can start ProviewR by clicking on the ProviewR icon on the screen.

If you want to run ProviewR as another user, you have to initiate ProviewR at login. Insert
the following line into the file .bashrc in the home directory

source /src/pw p/adm db/ pwr _set up. sh

If you have several users with common ProviewR projects, you have to make sure that they have
write access to files in the projects. One way to achieve this is to set umask to 002, and let
all users have the same group, e.g. pwrp.

Users

In the Case Study above, we learned how to create users belonging to different system groups.
This is described in the Administration chapter. At installation of the development package,

a user database is included containing the systemgroup ‘common' with five users, pwrp, opl,
op2, op3 and op4. pwrp is a development user and has system privileges in runtime. The op
users are operators and have operator privileges in runtime. These users work for many
applications, and we will settle with them for the moment.

&) |ald%|enam]a)aa)

(= common SystemGroupReg [~
& pwrp UserReg Proview project user
& opl UserReg Operator with Operatorl privilege
& op2 UserReg Operator with Operatorz2 privilege z
& op3 UserReg Operator with Operator3 privilege
& opd UserReg Operator with Operatord privilege

| | 1 | |

Users included in the installation

Note that when building ProviewR from sources, you have to create users before creating a
project.

Register volumes

As we also saw in the Case Study you can register volumes in the GlobalVolumelList. This can
be done later, by letting the configuration guide for the project register the volumes and

fetch the next free volume identity. We choose this way for the moment, but if you have

several independent development stations you should handle the registration manually to avoid
collisions of volume identities. If you have a larger plant with plenty of volumes, we also
recommend that you assign the volume identities manually and group them in a suitable way.

Create a project

To create a project you enter the project list of the administrator, by clicking on the
ProviewR icon, or by the command

> pwa

pwra is defined as 'wb -p pwrp pwrp', i.e. it is logging in as user pwrp. If you have defined
other users for development, you have to redefine 'pwra’ or use the 'wb -p' command directly.
wb takes user and password as arguments.

In the project list you enter edit mode and create a ProjectReg object on the top level or
under a hierarchy object. In the ProjectReg object you specify project name, ProviewR version
and path for the project. When you save, the project directories are created.

How to create a project is described in the Getting Started Guide. We recommend that you
go trough the sections for creating the project and configuring the directory volume before
continuing.

Directory Volume Configuration

Open a project

When the project is created, it is found in the administrator project tree. You open a project
by activating 'Open Project' in the popupmenu for a ProjectReg object.

You can also use the 'sdf' command to attach to a project. sdf takes the project name as
argument

> sdf trafficcrossl
The directory volume is now opened by the command
> pws

pwrs is defined as 'wb pwrp pwrp', i.e. it is logging in as user pwrp. If you have defined
other users for development, you have to redefine 'pwrs' or use the 'wb' command directly.
whb takes user and password as arguments (and also volume as third argument).

If the volume is empty, a guide to help with the configuration is started. To create a simple
project with a node and a volume you just have to press the 'Next' button.

The guide looks for volumes registered for the project. If there are no volumes registred it
suggests volumes with suitable volume names and free volume identities, and registers the
volumes if the suggestions are approved. The guide also creates all the configuration objects
in the directory volume and inserts suitable data into them.

If you later will expand the systems with more nodes and volumes, it is good to have some
knowledge of how the configuration is done, thus we describe how to configure the volume manually.

The Configuration Editor

The configuration editor displays two windows, and for the DirectoryVolume, the left shows
the volume configuration, and the right the node configuration.

Configure Volumes

First we configure all the root volumes, sub volumes and class volumes in the project. This
is done in the volume window in the directory volume. We start by creating a RootVolumeConfig
object the configures a root volume.

- Enter the edit mode from the menu 'Edit/Edit mode'. Now the palette is visible to the right
in the window, and maps can be opened with a click on the map symbol or a double click on
the text.

- Open the Volume map and select the 'RootVolumeConfig' class.

- Click with MB2 in the volume configuration window, and the object is created.

- Select the object and open the object editor from the menu 'Functions/Open Object'.

- Select ObjectName and activate 'Functions/Change value' in the object editor menu.

- Enter the name of the object. The name should be the same as the name of the volume.

- Close the object editor.

Create the RootVolumeConfig objects for the other rootvolumes of the project. For the following
objects you can control the position of the object. If you click with MB2 on the object name of
an object, the new object will be a sibling to this object. If you click on the leaf or map

symbol, the object will be a child.

Also subvolumes and classvolumes are configured in a similar way with SubVolumeConfig and
ClassVolumeConfig objects.

It is also possible to display the attributes of an object directly in the configuration editor:

- Press Shift and click MB1 on the object to open the object
- Select an attribute and activate Functions/Change value to modify a value.

Configure the nodes

In the right window, the nodes in the project are configured. You group the nodes by which
QCOM bus they communicate on. We create two BusConfig objects, one for the production nodes
and one for simulation. In the BusNumber attribute the busnumber is defined.

As children to the BusConfig object, the NodeConfig objects are created, one for each process
and operator station. When the NodeConfig objects are created, some additional objects are
created

- a RootVolumeLoad object that states the rootvolume to load when the runtime environment is
started on this node. The name of the object should be equal to the name of the root volume.

- a Distribute object that configures which files are copied from the development environment
to the process or operator station.

Open the NodeConfig object an enter nodename, operating system and ip address.

Below the BusConfig object for the simulation bus it is suitable to place a NodeConfig object
for the development station, and below this, a RootVolumelLoad that states the volume of the
process station you are going to work with first. In this way you can start the volume in
runtime and test it on the development environment. State the name, operating system and
ip address of the development station in the NodeConfig object.

System object
Create also a $System object in the node configuration window. The system object has the
attributes SystemName and SystemGroup.

- The system name in this state is often equal to the project name.

- The system group attribute makes the system a member of a system group in the user database,
which defines the users for the system. Once the system object is created you have to state
a valid username and password when entering the workbench.

Save

Save the session from the menu 'File/Save'. If the configuration passes the syntax check, you
will receive a question if you want to create the configured volumes. Answer Ok to these
questions and create the volumes.

If the volume selection window is opened now, 'File/Open' in the menu, all the configured
volumes are displayed. The next step is to configure a RootVolume.

Configure a Root Volume

A root volume is opened from the volume selection window. Select the volume and click on the
Ok button. This will start the configuration editor for the root volume. As for the
DirectoryVolume it is split in two windows, but this time, the left window shows the

plant configuration and the right the node configuration.

Plant Configuration

The Plant Configuration describes the different plants that you can find in the ProviewR
system. A plant is a logical description of e.g. a production process, functions, equipment,
that is to be controlled, supervised, etc.

See an example of a plant configuration

$PlantHier Object

The top object in the plant hierarchy is the $PlantHier object. This object identifies the
plant or parts of it.

The $PlantHier object is used to group objects and to structure the plant. This object can,
for instance, be used to group signal objects.

Signal Objects

The signal objects define logical signals, or points, representing a quantity or value
somewhere in the process; as contrast to the channel objects which define physical
signals. The signal objects are generic, i.e. they can be used with any 1/O-system.

There are some classes of signals that cannot be connected to hardware signal, i.e. the Dv,
Iv, Av and Sv objects (DigitalValue, IntegerValue, AnalogValue and StringValue). These objects
are used to store logical values, integer value, real numbers and strings respectively.

The actual value of the signal is defined by the attribute ActualValue.

At present the following signal objects are available:

Al Analog input.
Ao Analog output.
Av Analog value.
li Integer input.
lo Integer output.
Iv Integer value.
Di Digital input.
Do Digital output.
Po Pulsed digital output.
Dv Digital value.
Co Counter input.
Sv String value.

Note! The PLC program can read signals placed on remote nodes, but cannot write to them.

PlcPgm Object

The PlcPgm object defines a PLC program. It is possible to have several PLC programs in a
plant. The following attribute must be given a value:

- ThreadObject indicates the plc thread where the program is executed. It references a
PlcThread object in the node configuration.

- If the program contains a Grafcet sequence, the ResetObject must be given. This is a Dv, Di
or Do that resets the sequence to its initial state.

Backup Object

The Backup object is used to point out the object or attribute, for which the backup will be
made. It is also indicated whether storing will take place with fast or slow cycle time.
MountObject

The MountObject mounts an object in another volume. The attribute Object specifies the mounted
object.

Node Configuration

The Node Configuration defines the nodes of your ProviewR system. The nodes are named and
their contents specified.

il PwR Mavigator Yolume YolOpTrafficCrossi, & -0 x|
File Edit Functions Wiew Options Help
7 Hodes $NodeHier -
0 opl $Hode Operator station
& crossl SMountObject
Al |+

Fig Node Configuration

$NodeHier Object

The node hierarchy object is used to group objects in the Node Configuration. This object is

of the $NodeHier class. The object can be used to group for instance $Node objects or XttGraph
objects.

See $NodeHier in Object Reference Manual

$Node

To define the nodes of the system, you use node objects. The node object is of the $Node class.
When the node object is created, a number of server and operator objects are created.

See $Node in the Object Reference Manual

I/0 Objects

The configuration of the 1/0 system is dependent of which type of I/O system you use. ProviewR
has a modular 1/O that can handle different types of I/O systems: rack and card systems,
distributed bus systems, or systems connected with some network.

The modular I/O is divided in four levels: agent, rack, card and channel.

Rack and Card System

We will take the PSS9000 as an example of a rack and card 1/0. The system consists of analog
and digital input and output cards that are mounted in racks. The rack is connected via a bus
cable to a busconverter card in the computer that converts the PSS9000 bus to the computers
PCI bus.

In this case, the agent level is not used, so the $Node object works as an agent. The rack

level is configured with SSAB_Rack objects that are placed below the $Node object, one for
each rack in the system. The cards are configured with objects below the rack object, that are
specific for different kind of 10 cards. For PSS9000 there are card objects like Ai_Ai32uP,
Ao_Ao4uP, Di_DIX2 and Do_DVDO32. Below a card object, channel objects are placed, one for
each channel on the card.

Common for the different I/O systems are the channel objects, that define the input or output
channels of a card or module. There are some different types of channels.

ChanDi Digital input

ChanDo Digital output

ChanAi Analog input

ChanAit Analog input with conversion of the signalvalue from a table
ChanAo Analog output

Chanli Integer input

Chanlo Integer output

ChanCo Counter input

iXi PwR Navigator Yolume YolTrafficCross1, eric on traffi i [w] 5
File Edit Functions Wew Options Help
> Hodes $ModeHier 4]
[crossl $Hode Process station
% MessageHandler MessageHandler
8 l10Handler IOHandler
O P FicProcess
= Rackd Rack_55AB
= D4 Di_DIx2
00 ChanDi
= Doa Do_HYDO32
& 00 ChanDo
&om ChanDo
&0 ChanDo
& 03 ChanDo
& 04 ChanDo
& 04 ChanDo
& 06 ChanDo
& 07 ChanDo
& 0B ChanDo il
4] [+

Fig I/0 configuration

Distributed 1/0O

As an example of distributed 1/0 we choose profibus. In this case, all the four levels are used.

In the PCI bus of the computer, there is a mastercard that communicates with a number of slaves
on the profibus circuit. The mastercard is configured with a Pb_Profiboard card on the agent
level. Below this, we find the different slaves configured with Pb_DP_Slave objects. They
represent the rack level. Below the slave objects there are module objects of type Pb_Ai,

Pb_Ao, Pb_Di, Pb_Do etc, that are placed on the card level. Below the module objects finally,
the channels are configured with the channel objects ChanDi, ChanDo etc.

Process and thread for I/O objects
I/0O objects of the card level, often contains the attributes Process and ThreadObject. Which
process that shall handle the card is defined in Process.

The card can be handled by the PLC program, that is, reading and writing is made synchronized
with the execution of the PLC. You can also specify a thread in the PLC that should handle the
card, i.e. which timebase is used to read or write the card (the PlcThread attribute).

The card can also be handled by the rt_io process, that usually has a lower priority than the
PLC, and that is not syncronized with the PLC. Certain types of analog inputcards that take
some time to read are with advantage handled by this process.

You can also write an application that handles reading and writing of cards. There is an
API to initiate, read and write the cards. This is useful if the reading and writing of a
card has to be syncronized with the application.

MessageHandler Object

The MessageHandler object configures the server process rt_emon, that handles the supervision
objects (DSup, ASup, CycleSup). When an event is detected by the server, a message is sent
to the outunits that have interests in this specific event.

In the object is indicated for example the number of events that are stored in the node. The
object is automatically created below a $Node object.
See MessageHandler in the Object Reference Manual

IOHandler object

IOHandler configures properties for the I/O handling.

- ReadWriteFlag specifies whether to address physical hardware or not.

- 10SimulFlag indicates whether to use the hardware or not.

- The timebase for the rt_io process, i.e. the process that handles slower types of 1/O cards
that are not suitable to be handled by the PLC.

In the production system for a process station, ReadWriteFlag is set to 1 and IOSimulFlag is
set to 0. If you want to simulate the process station, for example on the development station,
ReadWriteFlag is set to 0 and 10SimulFlag is set to 1.

The IOHandler object is created automatically, when creating a $Node object.
See IOHandler in the Object Reference Manual

Backup_Conf Object - Configuration Object for Backup

Sometimes it may be desirable to have a backup of a number of objects in your system. In that
case you place a backup configuration object, Backup_Conf, under the node object. The backup
is carried out with two different cycles, one fast cycle and one slow.

In order to indicate which objects/attributes that should be backed up you use backup objects.
See description of the Backup object
See Backup_Conf in Object Reference Manual

Operator Place Object

To define an operator place you place an object of the OpPlace class under the $Node object.

The following attributes must be given values:

- UserName is a name of a ProviewR user, defined in the UserDatabase. The privileges of the
user determines the access to the system.

- MaxNoOfEvents indicates the number of events that the operator's event list can hold at
the same time.

- EventSelectList indicates the object hierarchies in the Plant Configuration, from which the
operator will be receiving events.

If we look at the figure below, that illustrates the plant A, and assume that we want to
receive events only from the encircled objects, we state 'A-C' as an alternative in the

select list. This choice means that we will be receiving events from the supervised object C,
and from all supervised objects that have C as their parent.

[T]

S N REEE

Fig EventSelectList example 1

Another example:

We look at the figure below, which illustrates the plant TrafficCrossl. If you want to receive
all events from the plant TrafficCrossl, you state TrafficCross1 as an alternative.
TrafficCross1 handles two traffic lights, TrafficLightNS and TrafficLightWE. Let us say that
we want events only from TrafficLightNS. In that case we state 'TrafficCross1-TrafficLightNS'
instead of TrafficCross1.

= TrafficCrossl FPantHier
(= TrafficLightNS $PantHier

& RedN3 Do
& YellowNS Do
& GreenN3 Do
[TrafficLightE¥ FPantHier
RedEW Do
& YellowEW Do
& GreenEW Do

[0 ControlSignals $PlantHier
(0 ControlPgm PlicPgm
Fig EventSelectlist example 2

If you want to receive messages from the CycleSup object that supervises the plc threads, you
must also state the hierarchy name of the $Node object in EventSelectList.

In FastAvail you specify the complete hierarchy name of the XttGraph object, which will be
possible to start from the graphics buttons of the Operator Window. You can have 0 - 25 push
buttons. Buttons that are not used become invisible.

See OpPlace in Object Reference Manual

ﬁ eric on aristotle aristotle

A Functions Overview Trafficcrossl
b a[afe)x

~|B A Trafficcross 1 is in service mode, ControlSignals-ServiceMode A IS & X |8

Fig Operator Window

The Plant Graphics Object - the XttGraph Object

In order to be able to show plant graphics that are unique to the project in the operator
station, you must configure XttGraph objects. These objects define, for instance, what the
files with the plant graphics are called. The objects are referred to in the FastAvail

attribute of the OpPlace object, and in the DefGraph attribute that is found in $PlantHier and
signal objects and makes it possible to open the graph from the popup menu for the object.

When the object is referred to in a FastAvail you can use the possibility to execute a Xtt command
from the XttGraph object. In this way, you can set a signal from a pushbutton in the operator
window.

- Action. States a Ge graph to open, or an Xtt command to execute.

See XttGraph in Object Reference Manual

Multiview object

Multiview is an operator window organized as table where each cell can contain a graph,

trend, sev history curve, alarm list, event list or another multview window. The example

below displays a multiview window with one column and two rows. The first cell contains

another multiview with two columns and tree rows, and the second cell contain an alarm window.
The different alarm windows show alarms from different parts of the plant, specified by
AlarmView objects. An multiview window is configured by a XttMultiView object. The Action
array contains the specifications for each cell.

It is also possible to exchange a graph or curve in a cell with the 'set subwindow' command.

= EEE
Cell 1 Cell 5

)
wl== = =

Fle Eunctions Mew Help Fe Functions Mew Help
G G EE
WA A 131022 12 Fnds ‘Sup slam numbeer | :I# A 131022 LaFnds ‘S slamm numbeer | __;
OB oA F 131022 La3k4E Some B alkarm < DB a4 131022 Lads Soma B alam |
|3 i
Cell 2 Cell 4

= = = =

e Euncticns Mew Help

~|alRle
WA TA L3122 1o Fnds Fp dam numbsr 123456 HI1-[vl Achusfvslue

O8 A F 131027 12343 Zome B akam H1.Dal l
WA A F] 131027 12343 Wiakch ok 1] H1.Dal

Fig Multiview window

Navigating the project

This chapter describes the projects structure and explains the purpose of the different
directories. The chapter also describes some important files that you can use to configure
and control different things in your project.

The directory structure is divided into two branches, one which contains all source files that
your project consists of and the other is the build tree where all produced files are placed.

9.1 Introduction

The figure below shows a project structure of the directory tree.
ltogin| _db | | pop | | enf | |appl | doc | common
|nodex‘ |node‘r| |Ioad||log||Inc|‘web‘|tmp| |exe||obj|‘llb‘|lls|
| userX ‘ | usery |
This directory structure was modified in ProviewR V4.7. The reason for this was to make it more
clear what the sources and configuration files of the project are, and what is generated content.
Earlier versions did not make this clear and the idea is that everything that resides in
the build tree can be regenerated from the source tree.
All directories have an environment variable defined, so it will be easy to reach all
directories in the project. These variables are always defined as:
$pwr p_<di rectory>

For example $pwrp_exe for the directory <project_root>/bld/x86_64 _linux/exe.

9.2 The source tree
The source tree contains all the files that are the sources and configuration files of the
projects. The top level $pwrp_src only contains subdirectories and no source or configuration
files. In the following the contents and purpose of the subdirectories are described.

9.2.1 $pwrp_login

9.2.2

9.2.3

9.2.4

This is the directory you will start in when you move to a project with the 'sdf'-command.
Two files here are of interest.

| ogin. sh
sysi nfo. txt

login.sh is a script that is run when you go to the project. It can be used to set up
project-specific environment variables and alikes.

sysinfo.txt is a text-file that will be printed in the terminal-window when you come to the
project. Information of what is going on or what is done in the project can be put here.

$pwrp_db

This is the directory where the databases for all your local volumes will reside (including

the directory volume where the project is configured). Each database resides in it's own
sub-directory. This is valid if you choose to create your databases as BerkleyDB-databases.
If you instead choose to have mysql-databases the databases will be created on your
mysql-server.

In this directory the files for user-defined classes also reside, the UserClassVolumes.
They are text-files with file-end wb_load. The user-classvolume usually has a similar name
as the RootVolume in the project that uses the classes. If your RootVolume is hamed
VolMyProject then the ClassVolume will be named CVolMyProject and the name of the file
thus will be:

cvol nyproj ect.wb_| oad
$pwrp_pop

This is the directory where the pictures developed with the ge-editor will be stored

(fileend *.pwg). Finished files should be copied to the exe-directory in the build-tree
($pwrp_exe). Also xtt-helpfiles should be developed here and copied to the
$pwrp_exe-directory.

Pictures that have a corresponding XttGraph-object in the node-hierarchy of a RootVolume will
automatically be copied to the $pwrp_exe-directory when that volume is built.

$pwrp_appl

This is the directory where you should keep source codes for your own applications belonging
to the project and also for codes that you want to link with the plc-program.

One file of special interest that should be kept here is
ra_plc_user.h

This file will by default be included when you compile the plc-code. It is however included
from a directory in the build-tree (<project_root>/bld/common/inc).

Note that the ra_plc_user.h is automatically generated on $pwrp_inc when the first PlcPgm
is compiled. If you need to modify ra_plc_user.h, you should copy it to $pwrp_applcode and
keep the original there.

All header-files located $pwrp_appl or in subdirectories and which should be included with the
plc-program must be copied to the $pwrp_inc-directory (<project_root>/bld/common/inc).

If you have some small functions that you only link with the plc-program and nothing else
then you typically place this code in a file called:

ra_plc_user.c

9.25 $pwrp_doc

This is the place where you put documentation related to the project. This can be your own
produced documentation or for example DataSheet's on components existing in your plant
that you might want to distribute to the operator stations.

9.2.6 $pwrp_cnf

This directory contains all configuration files for your project. Some configuration files
are common for the whole project and they are placed here. Some configuration files are
specific for each node in your project. Create a subdirectory here for each node that has
specific configuration files. Sometimes a configuration is unique to a specific user. If

this is the case, then create a subdirecty in the node-directory for that user.

Files that you should keep here is:

Configuration of Global function keys.
Rt _xtt

Configuration of menus and quick commands in rt_xtt.
xtt_setup.rtt_com

Startup file for ProviewR.
| d_appl _<nodenane>_<bus_no>. t xt

File to decide which libraries to link with the plc-program.
pl c_<nodenanme>_<bus_no>_<pl c_name>. opt

File to control setting of initial values when starting ProviewR.
pw p_al i as. dat

File with help texts
xtt _hel p. dat

All the above files are further described below.

9.3 The build tree

The build tree contains all the files needed when building the plc-program. It contains also

all the files produced when you build. Files needed when building the plc-program should be
in this tree, but the master for all files should be in the source tree. The idea is that

the build tree should be possible to remove completely and regenerated from the source tree.

9.3.1 $pwrp_exe

This is the directory where the exe-files for plc-programs are created. The plc-program
is named:

pl c_<nodenane>_<bus_no>_<versi on_no>

If you have your own applications in the project these exe-files should also be generated here.
9.3.2 $pwrp_obj

This is the directory where all object files produced during compilation should be placed.

9.3.3

9.34

9.3.5

9.3.6

9.3.7

9.3.8

9.3.9

Obiject-files for the plc-program are automatically placed here. The object file for a
PlcPgm-object placed in the PlantHier is named after the object identity of this object.

Object files for all other code should also be placed here.

$pwrp_lis

This is the directory where you place list-files produced during compilation.
$pwrp_lib

This is the directory where libraries will be created containing object files belonging to
a certain volume. You should also place your own libraries here.

$pwrp_load

This is the place where load-files for the projects volumes will be created. The load-files
are named:

<vol unenane>. dbs

$pwrp_log

This directory contains log-files that are produced during simulation of your project.
ProviewR's main log-file is named

pw _<nodenane>. | og

If you restart simulation, logging will be appended to this file. Remove it if you want a fresh
one.

$pwrp_tmp

This directory contains temporary files. These files will be created at certain operations.
For example if you compile a plc-program with debug-mode the source files created for this
program will be created here.

$pwrp_inc

This directory contains include-files that will be included when you build the plc-program.

A file called

ra_plc_user.h

will always be searched in this directory. If you have other header-files to include, then include
them in this one.

The master for all these include files should be kept in the source tree and copied here.

Header-files for userclasses will be created here when you build a classvolume. The files are
named:

pw _<cl assvoumenane>cl asses. h
pw _<cl assvounenane>cl asses. hpp

$pwrp_web

This directory contains all files for the web-interface, for example pwg files for Ge graph,
flw files for plc trace and xtt helpfiles converted to html.
here.

9.4

94.1

9.4.2

Special files

All special files that can be used for different kinds of configuration, or are of other interest
and are located somewhere in the project directory tree, are described here. They are all
mentioned above in this chapter.

Rt_xtt

This file is read by rt_xtt when started and the file is searched from the directory where
you start rt_xtt. The file configures hot-keys to perform different kinds of commands.

Valid commands are:

Conmrand [l This will performa xtt comrmand

SetDi g /1 This will set a digital signal to TRUE

Toggl eDi g /1 This will toggle the state of a digital signal
Reset Di g /1 This will reset a digital signal to FALSE

To bind a hot-key to a command you first define the key and then state the command.
For example to bind the keystroke <ctrI>F5 to a command that acknowledges a type A alarm:

Control <Key>F5: Command(event ack /prio=A)
A typical Rt_xtt-file could look something like this:

#

Function key definition file

#

Control <Key>F5: Command(event ack /prio=A)

Control <Key>F6: Command(event ack /prio=NCA) # ack non A-al arns

Control <Key>F7: Command(show al arm # open alarm i st

Control <Key>F8: Conmand(show event) # open event |i st

Bel ow opens a graph defined by a Xtt G aph-object in the node hierarchy.

The $Node- expression will be replaced by the node-object on this node.

This makes the Rt _xtt-file work on different nodes.

Al't <Key>F12: Commrand(open graph /object=$Node-Pi ctures-rkt_overview)

Bel ow opens a graph defined by a Xtt G aph-object in the node hierarchy.

The /focus-syntax sets focus on a object in the graph naned NewP| ate

Control <Key>F9: Command(open graph /object=*-Pictures-rkt_ platepic/focus="NewPl ate")
Control <Key>F10: Conmmand(open graph /object=*-Bilder-rkt_cells/focus="Check _no")
Bel ow cl oses all open graphs except rkt_overview.

Control <Key>F11: Command(cl ose all/except=rkt_overview)

Shift <Key>F1l: SetDi g(VWK- RKT- RB- DS- OnOF f Man_1_2. Act ual Val ue)

Shift <Key>F6: Reset Di g(VWK- RKT- RI - RP- Cal cPrePos. Act ual Val ue)

Shift Control <Key>v: Toggl eDi g(VWK- RKT- COM VWAKSVR- Bl ockOr der _RKT. Act ual Val ue)

Xtt_setup.rtt_com

This file is read by rt_xtt when started and the file is searched from the directory where
you start rt_xtt. The file configures the appearance of rt_xtt. You can build your own menus
and make entries that perform certain commands.

All commands in the file follow standard xtt command syntax. There is a built in help in
rt_xtt which explain most of the commands. To view this help type <ctrl>-b when in xtt to open

the command line and write help. Navigate through the commands to understand them.

When you start rt_xtt there is by default some menues where the first one is named Database.
If you, for example, would like to create a menu on top (before) this, use this command:

create itenitext="Mintenance"/ nmenu/ dest =Dat aBase/ bef ore

To create a sub menu (first child) to this, use this command:

create itenitext="WS"/menu/ dest =Mai ntenance/firstchild

To create an entry that performs a command below the VVS menu, use this command:

create item text="G aph P1"/command="open graph/object =$Node- pi cs-h4_procl"\
/ pi xmap=gr aph/ dest =Mni nt enance- WS/ | astchil d

The pixmap qualifier defines the appearance (icon) of this entry. Without this qualifier the
icon will be a leaf. The command opens a graph defined by an XttGraph-object in the node hierarchy.

The result will look like this:

= Xit'vhxop6 (on vhxop6) HEE

File Edit Functions View Help

= Maintenance

= WS

] Graph P1

O Database
O Alarm
O Store
O System
) Close

(] 1 | E|

In addition to building a menu you can also define symbols (shortcuts) that can be used as commands.
The symbols can be entered on the command line, and the command defined by the symbol will

be executed.

The following defines a symbol 'h4' that will open a graph:

define h4 "open graph /object=*-pics-h4 _processl"”

In the xtt_setup-file you create one command per line. Comment lines starts with an exclamation mark.
9.4.3 Id_appl_<node>_<bus_no>.txt

This file controls which applications should start when you start ProviewR runtime. You can add your
own applications as well as turn off one or more of the ProviewR kernel applications.

A typical |d_appl-file can look like this:

Startup file for ProviewR

#

id, nane, | oad/ nol oad run/norun, file, prio, debug/ nodebug, "arg"
#pwr _net h, , hoload, norun, , 5, debug, ""

#pw _pl c, , hoload, norun, , , debug, ""

#pw _al im , hoload, norun, , 5, debug, ""

#pwr _enon, , hoload, norun, , 5, nodebug, ""

#pwr _t non, , hoload, norun, , 5, debug, ""

#pwr _qnon, , hol oad, norun, , 19, debug, ""

#pwr _nacp, , hoload, norun, , 5, debug, ""

#pw _bck, , hoload, norun, , 5, debug, ""

#pw i 0, , hoload, norun, , 5, debug, ""

#pwr _| i nksup, , hoload, norun, , 5, debug, ""

#pwr _trend, , hoload, norun, , 5, debug, ""

#pwr _f ast, , hoload, norun, , 5, debug, ""

#pwr _remh, , hoload, norun, , 5, debug, ""

pw _rem og, , hoload, norun, , 5, debug, ""

#pwr _sysnon, , hoload, norun, , 5, debug, ""
#pwr _el og, , hoload, norun, , 5, debug, ""

pw _websocket server, , hoload, norun, , 5, debug, ""
#pwr _opc_server, , hoload, norun, , 5, debug, ""
#pw _sevhi st non, , hoload, norun, , 5, debug, ""
#pwr _sev_server, , hoload, norun, , 5, debug, ""

#rs_nnps_bck, rs_nmps_bck, noload, run, rs_nnps_bck, 12, nodebug,
ra_utl _track, ra_utl _track, noload, run, ra utl _track, 12, nodebug, ""

The sharp sign means that those lines are commented away. Almost all of the ProviewR kernel applications
are commented away since we want those to start. If | take away the hash sign then this kernel

application will not be started. For example in this case | have no web-interface so | don't

want the web server to start (pwr_websockerserver).

If | use Nmps-cells and want the content of the cells to be backed up | take away the sharp sign
onrs_nmps_bck.

On the last line | have added an application produced by myself. I've chosen priority 12. | don't
want this application to interfere with the kernel applications and they run between 17 and 19.

9.4.4 plc_<node> <bus_no>_<plc_name>.opt

Note! This file is deprecated since V4.8.2. A BuildOptions object should be used instead.

This file (if it exists) will be used as the link options when | build the plc-program.
ProviewR by default links against some libraries and object-files. If you have your own
opt-file you need to include these. A default opt-file would look like:

$pwr_obj/rt _io user.o -lpw _rt -lpw _ushio dumy -Ipw usb dumy -I|pw _pnak_dunmy
-l pw _cifx_dumy -1 pw _nodave dumry -1 pw _epl dumry

Add your own libraries at will. The syntax to be used is the syntax for Id (The GNU linker). ProviewR
will create a template option file .opt_template that can be renamed to .opt and used as a template.

9.4.5 pwrp_alias.dat
File to control setting of initial values when starting ProviewR.
There are some different ways of setting values through the pwrp_alias-file.
The same file is used for all nodes in the project. Each row in the file should start
with the following expression:
<nodenane>_set val
The different ways of setting things is described below:
1. Setting an attribute value
<nodenane>_setval <attribute_name> = <val ue>
example:
bsl ds1_setval bsl-dsl-par-maxtenp. actual value = 70.0
Using the above described syntax will set the value before the backup is loaded and before
the plc-program is started. This means that if a value is backed up then the backuped value
will always be valid.
If you instead really want the setting in this file to have effect then use this syntax:

<nodenane>_setval p <attribute_name> = <val ue>

In this case the setting will take effect after the backup-file is loaded and the plc-program
is started.

2. Setting simulation mode

Setting the simulation mode means that no physical i/o will be handled. You can write simulation
programs to set correct values on the input i/o. Add this line to the file:

<nodenane>_setval plcsim= yes

3. Set all plc-programs to scan off at startup

To set all plc-programs to scan-off use this line:

<nodenane>_setval plcscan = off

Turn a plc-program on by finding the corresponding WindowPIc-object (child to PlcPgm-object) and

set the attribute ScanOff to 0. Observe that there might be subwindows in this program
that also need to be turned on.

9.4.6 letc/proview.cnf

A configuration file for definition of various parameters both in developmen, runtime and

storage environment. In the development environment the definitions are valid for all projects

on the station.

Parameters in the development environment

mysqlSocket

mysqlServer
defaultProjectRoot

defaultProductionQBus
defaultSimulationQBus
defaultSystemGroup
defaultNodeHierRoot
defaultSecurity
defaultXttPriv
defaultOpPlaces
defaultServers
defaultlO
defaultApplications
defaultOpOp
defaultOpMaintenance
defaultOpDefault
defaultWebBrowser

gcomBusld

Parameters in the runtime environment

gcomBusld
curveExportFile
webDirectory

Parameters in the storage environment

sevDatabaseType
sevXttDefaultPriv
sevMysqlEngine

mysql socket for volumes with mysql database. Default value
"fvar/run/mysqld/mysqgld.sock".

mysql server node.

The default path to projects when creating new projects.
Default value "/usr/local/pwrp".

The default production bus when creating new projects.

Default value 1.

The default simulation bus when creating new projects.

Default value 999.

The default system group when creating new projects.

Default value "Common".

Default name of the top level object in the node hierarchy when
creating new projects. Default value "Nodes".

Default name of the Security object.

Default value "Security".

Default value of XttPriv in the Security object.

Default value "Security".

Default name of map for OpPlace objects in the node hierarchy.
Default value "OpPlaces".

Default name of map for server objects in the node hierarchy.
Default value "Servers".

Default name of map for 10 objects in the node hierarchy.
Default value "10".

Default name of map for application objects in the node hierarchy.
Default value "Applications".

Default name of OpPlace object fér operators in the node hierarch
Default value "Op".

Default name of OpPlace object for maintenance in the node hiera
Default value "Maintenance".

Default name of default OpPlace object in the node hierarchy.
Default value "OpDefault".

Default name of WebBrowser object in the node hierarchy.
Default value "WebBrowser".

QCom bus identity for simulation.

QCom bus identity.
Default file name for the history curve export function.
Directory where the web files are placed and accessed by the wek

Database type, mysql or sqlite.
Default privileges for access of the sev database from sev_xtt.
Mysqgl engine for created tables, innodb or myisam.

10

Graphical PLC Programming

This chapter describes how you create PLC programs.

The Editor

You enter the plc editor from a PlcPgm object in the plant configuration. Select the object
and activate 'Functions/Open Program' in the menu. The first time the program is opened, you
will find an empty document object. The program consists of functions blocks and Grafcet sequences.

Programming with function block is made in a horizontal net of nodes and connections from left
to right in the document. Signals or attributes are fetched on the left side of the net, and

the values are transferred via connections from output pins to input pins of functions blocks.
The function blocks operate on the values, and on the left side of the net, the values are

stored in signals or attributes.

Grafcet sequences consist of a vertical net of nodes and connections. A state is transferred
between the steps in the sequence via the connections. Grafcet and function block nets can
interact with each other and be combined to one net.

Edit function objects

The plc editor consists of

- aworking area

- a palette with grafcet objects and function blocks, and a palette with connections
- a navigation window, from which the work area can be scrolled and zoomed

ki Lib-Plc-demoPlc
File Edit Search Wiew Functions Mode Help

=10l x|

e VAR I e N A

— | (0 Analog
("1 Control
1 Drive
1 Edit

"1 Grafcet
3 Integer
[~ Logic

Di | Pc-Dil And stoDo | Plc-Dol

Dv | Plc-Dve And0

< Edge
& Inv

1F
T
o

i

[»]

Fig The Plc editor

A function object is created by selecting a class in the palette, and pressing MB2 in the
working area.

Modify the object

The object is modified from the object editor. This is opened by selecting the object and
activating 'Functions/Open Objects' in the menu. Values of the object attributes are modified
with 'Functions/Change value' in the object editor menu, or by pressing the Arrow Right key.
If an input or output is not used, it can be removed with a check box. There is also a

check box which states that the value of a digital input should be inverted.

Connect function objects

A output pin and a input pin is connected by

- Place the cursor on the pin, or in an area in the function object close to the pin, and
press MB2.

- Drag the cursor to the other pin, or to an area in the function object close to the pin, and
release MB2.

A connection is now created between the function objects.

Fetch a signal value

The value of a Di signal is fetched with a GetDi object. The GetDi object has to point at a

Di signal and this is done by selecting the signal in the plant configuration, and then press

Ctrl and double click on the GetDi object. The name of the signal is now displayed in the
drawing. Dv signals, Do signals and attributes are fetched in the same way, with GetDv, GetDo
and GetDp objects.

The easiest way to create a Get object is to draw a connection from input point where the Get
object should be connected, and release it in an empty space in the work area. A generic Get
object is now created that will be transformed to a Get object of the correct type when the signal
is specified. The signal is specified as before by selecting the signal in the plant hierarchy

and Ctrl/double click on the Get object.

Store a value to a signal

The value of an output from a function object is stored in Do signal with a StoDo objects.
The StoDo object is connected to a Do signal in the same way as the Get objects. Dv signals
and attributes are stored with StoDv and StoDp objects.

Grafcet Basics

This section gives a brief introduction to Grafcet. For a more detailed description, please
read a reference manual on Grafcet. Grafcet is an international norm or method to use at
sequential control.

Grafcet consists of a number of steps, and to each step one or more orders are connected, which
will be executed when the step is active. In order to move from one step to another, a

transition is used. For each transition you have transition conditions, and the move can only

take place when the transition conditions have been fulfilled.

Single Straight Sequence

We look at the single sequence below and assume that the step is active, which means that the
order connected with the initial step will be carried out. This order will be carried out

until the initial step becomes inactive. Step 1 becomes active when the transition condition

for transition 1 has been fulfilled. Then the initial step becomes inactive.

A Grafcet program is always a closed sequence.

Init Step \

¥

start

Orier1

Transition |

[

P
T
=

_j Oriler2 |

1 T

Order

Fig A Simple Straight Grafcet Sequence

Diverged sequence

A straight sequence is the most simple variant of sequences. Sometimes you may require
alternative branches in your program, for instance when you have a machine which can
manufacture three different products. At the points where the production differs, you introduce
alternative branches.

151

51 52

53 54 55

56

| T10

Fig Sequence Selection

The example in the figure above shows the sequence for a machine which can manufacture the
three products, Red, Green, and Blue. At the point of divergence, point 1 in the figure, you

choose the desired branch depending on the product to produce. The alternative branches diverge
from a step, that is followed by one transition condition in each branch. It is the

constructors task to see that only one of the transition conditions is fulfilled. If several

are fulfilled, it is undefined which one that is selected. At point 2 in the figure, the branches

are converging to a common step.

Parallel Sequences

Sometimes it may be necessary to start several parallel working procedures at the same time.
It must be possible for these working procedures to operate independent of each other. In
order to do this, parallel sequences are used.

152 -
|
57 |
1 \
T
Sﬂ| | 59 -
_T13 _ll*l
s10 | 5N |
s s
812 | 513 |
,

Fig Parallel Sequences

The example in the figure above illustrates the sequence for two machines that are drilling

two holes at the same time and independent of each other. When the transition condition before
the parallel divergence (point 1 in the figure) is fulfilled, the activity is moved to

both branches, and the machines start drilling. The drilling is performed independent of each
other.

The branches are converging to a transition condition (point 2 in the figure), and when the
drilling is completed in both machines, i.e. both S12 and S13 are active, and the transition
condition T17 is fulfilled, the activity is moved to the init step 1S2.

Step

11 B .

A Step is used to describe a state in the process. The following applies to a step:

- A step can be active or inactive.

- An attribute, Order, indicates whether the step is active or not.
- You can connect one or more orders to a step.

- The step can be allocated a name at your own discretion.

InitStep

133 -

In each sequence you must have an initial step (InitStep) which differs from a usual step
in the following way:

- You should only have one initial step in a sequence.
- When the program starts its execution, the initial step is active.
- You can always make the initial step active by setting the reset signal.

Transition - Trans

As mentioned above, the transition (Trans) is used to start a transition between an active
and an inactive step. A logical condition, for instance a digital signal, is connected to a
transition, and determines when the transition is taken place.

s14 |
[i | serviceswitch | Di4-00 |— T18
s15 |
Dv | OperatorSwitch And T19
Dv | ServiceMode AndD

Fig A Transition Example

Order

It is possible to connect one or more orders to each step.

316 ——|L | Order | 5 |———| StoDo | ServiceModelnd | Do5-07 |

Fig An Order Example

Normally the output is active when the input is active, but for each order you have a number
of attributes, with which you can influence the function of the output:

- D Delay

- L Time limit

- P Pulse

- C Conditional
- S Stored

These functions are described in detail in ProviewR Objects Reference Manual. The principles are
that you indicate the name of the attribute (capital letters) and possible time by means of the
Obiject Editor. The figure below illustrates how to delay an order from being active for 10

seconds.

i1 Object Attributes o] |
File Functions Help

[= Cond 0 Used [] |

(B Status Used [m|

= Atirl D o

= AttrTimel 10.000000

= fttr?

= AttrTime2 0.000000

= fttr3

= AttrTime3 0.000000

= ftird

= fttrTimed 0.000000

= fttr

= AttrTimes 0.000000

= fttrb

= AttrTimeb 0.000000

= ShowAttrTime 1

| ‘ | aaaaaaa | ﬂ

Fig DOrder Attributes
The selected order attributes are written in the order symbol.

The figure below illustrates how you can use an order object with delay to make a step active
for a certain time.

S p|ora3 [10|—---.

Fig A Delayed Transition
Note! You must use a ConFeedbackDigital connection to connect the delayed order object with

the transition object, otherwise the order of execution will be ambigous.
See Feedback Connection

Subsequence - SubStep

When you are creating complex Grafcet programs, it is often suitable to use subwindows,
and to place subsequences in these to get a better layout of the program.

V| seo |
12
__.I-21 f-.z
s19 |
350
T4
T22 "
s |
~ |15
. |sen

Fig Subsequence
The above figure shows the sub sequence of a SubStep. A sub sequence always starts with an

SsBegin object, and ends with an SsEnd object. In its turn a subsequence can contain
subsequences.

Building Grafcet sequences

Grafcet sequences are easily built in the plc editor by starting with a Step or InitStep

object. By drawing a connection from the lower connection point of the step, and releasing

the connection in an empty space in the work area, a connected Trans object will be created.
In the same way Order objects are created from the right connection point, and from the Trans
object, new Step objects will be created from the upper and lower connections points.

An Introduction to Function Block Programming

Blocks to fetch and store values

Blocks to fetch and store are used to read and write values. There are fetch and store blocks
for each type of signal. In the figure below a number of these blocks are displayed. They
are found in the 'Signal’ folder in the palette.

Ai —

Ao — —| Stodo | | |

Ay — — StodAy

Ap — — StodAp

Di —

Do — — StoDo
— SetDo
— ResDo

st
— SetDy
— ResDv

Dp — — StoDp
— SetDp
— ResDp

lo - — Stolo_ | | |

Iy — — Stoly

I — — Stolp

Fig Blocks to fetch and store values

To read signals you use blocks like GetAi, Getli, GetDv or GetAo. When you want to give a value
to a signal, you use for instance StoAv, StoDo, SetDv or ResDo.

Digital values can be written in two ways:

- 'Sto’ stores the input value, i.e. if the input is 1 the signal becomes 1, and if the input is
zero the signal becomes zero.

- 'Set' sets the signal to one if the input is true, Res sets the signal to zero if the input
is true. For instance, if you set a digital output signal with a SetDo object, this will
remain set until you reset it with a ResDo object.

To read, respectively assign attribute values other than the ActualValue attribute, you use the
following:

- analog attributes, GetAp and StoAp

- integer attributes, Getlp and Stolp

- digital attributes, GetDp and StoDp, SetDp or ResDp
- string attributes, GetSp and StoSp

- time attributes, GetAtp, GetDtp, StoAtp and StoDtp

Logic Blocks

A number of objects are available for logical programming, for instance And-gate (And),
Or-gate (Or), inverter or timer. For the logical programming digital signals are used. The
objects are placed in the folder Logic.

Dv And or 4|Stnﬂn | | |
Dy o Andi o~ O

Dy XOr J

Dy ®Or0

Fig Logic Blocks
The figure below shows an And-gate. For this object the following applies:

- Inputs to the left

- Output to the right

- Class name is written at the top

- The object name is written at the very bottom (can be changed by the user)
- You can use a variable number of inputs, default is 2

- The inputs can be inverted, indicated by a ring on the symbol's input

Class name Ou?
d

And-gate

Inverted input

d2

Object naune

The attributes of the And-gate are changed with the Object Editor.

ixi Object Attributes -10| x|
File Eunctions Help

= Inl] Used [m] Inverted [-]
= I|n2] Used [m] Inverted [

= In3] Used [| Inverted [

= Ind] Used [| Inverted [

= In5] Used [| Inverted [

= Inb 0 Used [] Inverted []

= In7 0 Used [] Inverted []

= In§ 0 Used [] Inverted []

= Status 0 Used [m

Kl]

Fig Attributes of the And-Gate

The other objects in the 'Logic’ folder have similar parameters, see ProviewR Objects Reference
Manual .

Calculation Blocks

The folder 'Analog' contains a number of objects for handling analog signals, for instance
filters, summation blocks, and integrators.

Output

Analog inputs Adbrithm
T A1 WAL

Expression A2
\—:i‘
1+82°A3

AAritd

Fig Arithmetical Calculation Block

In this guide we do not describe the function of the objects, but it may be expedient to
comment on the use of arithmetic blocks. The blocks are used for calculation of user defined
expressions. These are written in the C language.

In the figure below the block will calculate the expression (Al + A2 * A3) and give the output
this value. A1, A2 and A3 are representing analog values, for instance signals supposed to be
connected to the inputs of the object.

When writing these expressions it is important to use space before and after the operators,
otherwise the expression may be misinterpreted at the execution.

The expression can contain advanced C code with arrays and pointers. When you write these, you
should be aware that indexing outside arrays, or erroneous pointers might cause the
execution of the plc-program to terminate.

Alarm Supervision

In ProviewR it is possible to supervise analog and digital signals. Supervision of analog
signals is made against a limit value. If the supervised limit is exceeded, an alarm is sent
to the Message Handler, which in turn sends the alarm to the out unit, e.g. an operator
dialog.

See ProviewR Objects Reference Manual regarding the attributes of the objects.

Supervision of Digital Signals

For supervision of a digital signal or attribute, you use the DSup object (Digital
supervisory), which is in the folder Logic.

The desired signal or attribute, is fetched with a Get-object that is connected to the DSup
object. Outputs of logical blocks can be directly connected to the DSup object.

| Dy | ServiceMode |—| DSup | DSup0 |P1 i3 in service mode

Fig Digital Supervisory Objects
Figure above illustrates supervision of a Dv signal and a digital attribute.

You also have an attribute in the DSup object, 'CtrIPosition’, that indicates whether the
alarm will be activated when the supervised signal/attribute becomes true or false.

Supervision of Analog Signals

For supervision of an analog signal or attribute, you use the ASup object (Analog supervisory),
which is in the folder 'Analog' in the palette.

Supervision takes place in the same way as for DSup objects with the exception that you can
choose whether the alarm will be released when the value is above or below the supervision
limit.

Execute order

The execute order is determined by the how the function objects are coupled together. An object
which output is connected to the input of another object, is executed before the object it

is connected to. You can see the execute order by activating 'View/Show Execute Order' in the
plc editor menu. For objects and nets that are not coupled together, the execute order is
determined by the position. Object higher up is execute first.

If you want to influence the execute order between two objects, you can draw a special execute
order connection beween the objects. This is choosen in the connection palette and has an
arrow in one end. The object that the connection is pointing at will be executed after the

object that the connection emanates from.

If a net contains a feedback connection, the execute order can't be determined and the error
'Amigous execute order' is messaged. You then have to exchange one connection to a feedback
connection, ie a connection that doesn't determine the execute order. The feedback connection is
dashed and is selected in the tool panel or in the connection palette.

I/O copying

If a signal is used in several places in a net of function objects, there is a chance that

the signal value will be changed during the execution which can result in lockings and other
fenomena that is hard to predict. Therefor a mechanism called 1/O copying is used. The
signal values for signals of type Ai, Ao, Av, Di, Do, Dv, li, lo, lv, Co, Bo and Bi are

gathered in special area objects. Before a plc thread starts to execute, a copy of the area
objects are made, and during the execution all the readings are made from the copy, while
writings are made into the original area objects. This ensures that this kind of fenomena is
avoided, but also that you can get delays. If a signal value is set, and then read in the same
plc thread, the modification will not be registred until the next scan.

Compile the plcpgm

Before starting to compile, you have to state on which platform (or platforms) the volume of
the plc should run. Open the volume attributes editor from the navigator menu:

'File/Volume Attributes', and enter the OperatingSystem. Note, that more than one operating
system can be chosen. The volume can at the same time be run in the production system, in a
simulation system and in a educational system, and the systems can have different platforms.

The plcgpm is compiled by activating 'File/Build' in the plc editor menu. Any warning or error
messages will be displayed in the message window. When building the node, any new or modified
plcpgm will also be compiled.

11

Call functions from the plc program

The functionobject programming in the plc editor has its limitations, and some tasks can

be done much easier and nicer in c-code. ¢ programming can be achieved in CArithm and
DataArihm where you can put an amount of c-code, but the number of characters are limited
to 1023 (8191 for the DataArithmL), and occasionally this is not enough. Then you have two
possibilities; to write a detached application, or to call a c-function from a CArithm or
DataArithm. The advantage with calling a c-function is that all initialization and linking

to objects and attributes are handled by the plc program. The execution of the function is
also synchronous with the execution of the plc thread calling the function.

Write the code

The code is put into a c file, created somewhere under $pwrp_src. We create the file
$pwrp_src/ra_myfunction.c and insert the function MyFunction() that performs some simple
calculation.

#i ncl ude "pw . h"
#i nclude "ra_pl c_user.h"

void MyFunction(pw _tBool ean cond, pw _ tFloat32 inl, pw _tFloat32 in2,
pw _t Fl oat 32 *out)

{
if (cond)
*out = inl * in2;
el se
*out = inl + in2;
}

Prototype declaration

In the include file ra_plc_user.h a prototype declaration is inserted.

void MyFunction(pw tBool ean cond, pw _tFloat32 inl, pw _tFloat32 in2,
pw _tFloat32 *out);

ra_plc_user.h is included by the plc program, and the function can be called from a CArithm
or DataArithm object. You should also include ra_plc_user.h in the function code to ensure
that the prototype is correct.

ra_plc_user should be placed on $pwrp_src and copied to $pwrp_inc, from where it is included
by the plc program and the function code.

Compile the code

The c file is compiled, for example with make. Below a makefile is shown, that compiles
ra_myfunction.cpp and puts the result, ra_myfunction.o on $pwrp_obj. Note that there is also

a dependency on ra_plc_user.h, which causes this file to be copied from $pwrp_src to $pwrp_inc.

ra_nmyfunction top : ra _myfunction
i nclude $(pw _exe)/pw p_rul es. nk

ra_nyfunction _nodules : \
$(pwp_inc)/ra_plc_user.h \
$(pw p_obj)/ra_nyfunction.o

ra_nyfunction : ra_nyfunction_nodul es
@echo "ra_myfunction built"

#
Modul es
#

$(pwp_inc)/ra_plc_user.h : $(pwp_src)/ra_plc_user.h
$(pwp_obj)/ra_nmyfunction.o : $(pwp_src)/ra_nyfunction.c \

$(pwp_inc)/ra _plc_user.h

Call in the plc program
The function is called from a CArithm or DataArithm.

CArithm

Av | H1-Avl Al oAl StoAv | H1-Av3
Av | H1-Av2 A2
Dv | H1-Dwl dl
Dv | H1-Dv2 d2

if (d1)

MyFunction(d2, Al, A2, &OAL);

CAritl

Fig Function call from the plc code

Link the plc program

When the source code of the function was compiled, the object module
$pwrp_obj/ra_myfunction.o was created. This has to be added to the link command when the
plc program is built, which is achieved by creating a BuildOptions object in the

directory volume under the NodeConfig object. Insert the name of the object module in

the ObjectModules array. When the directory volume is saved, an opt-file is created on
$pwrp_exe that will be included by the linker when the node is built.

[volume | | Prdloo BusCunﬁé

[~]
(1 Node Fr trpool NodeConfig |I|
¥ WolTRPOO1 RootVolumeload
BuildOpt BuildOptions
= » ObjectName BuildOpt
= p» PlcProcess plc

B4 » SystemModules 0O

CE» ObjectModules

= p ObjectModules[0] $pwrp_objfra_myfunction.o

= » ObiectModules/1] [v)

()

[~)

Fig The object module inserted in BuildOptions

We can now build the node and startup ProviewR runtime.

Debug

One disadvantage when you leave the graphic programming and call c-functions is that you
can't use trace any more for debugging. If you suspect some error in the function code,
you occasionally have to start the plc program in debug, set a breakpoint in the function
and step forward in the code.

First you have to build the plc program with debug, by opening Options/Setting from the
configurator and activate Build/Debug, and then build the node.

After that you start ProviewR runtime and attach the debugger, gdb, to the plc process by
starting gdb with the pid for the process. pid is viewed by 'ps x'

> ps X
5473 pts/0 Sl 0: 18 plc_nynode_0999 plc

where 5473 is pid for the plc process, and we start the debugger, set a breakpoint in the
function and let the program continue to execute

> gdb -p 5473 plc_mynode_0999 plc
(gdb) b MyFunction
(gdb) c

When the program enters the function it stops in the debugger, and we can step (s) and
examine the content in variables (x) etc.

If the plc program is terminated immediately after start, you can restart in debug.
> gdb pl c_nmynode_0999 plc

You can also kill the current plc process and start a new one in debug.

> killall plc_nynode_0999 plc
> gdb pl c_mynode 0999 plc

12

Components and Aggregates

This chapter is about how to program with components and aggregates.

A component is one (or a number of) objects that handles a component in the plant. A
component can be for example a valve, a contactor, a temperature sensor or a frequency
converter. As these components are very common and exist in many different types of plants,
it is a great advantage if we can construct an object that contains all that is needed to

control and supervise the component, and is so general that it can be used in most
applications.

A component in ProviewR can be divided into a number of objects:

- a main object containing configuration data and data needed to supervise and operate
the component. It also contains the signal objects for the component.

- a function object that is placed in the plc program and that contains the code to
control the component.

- an /O object that defines possible communication with for example a profibus module.

- a simulate object, used to test and simulate the system.

Furthermore an object graph, documentation, trends etc are included in the component.

An aggregate is a larger part in the plant than the component, and contains a number of
components. An aggregate can for example be a pump drive, consisting of the components
pump, motor, contactor and safety switch. In other respects, the aggregate is built as

a component with main object, function object, simulate object, object graph, documentation
etc.

Object orientation

ProviewR is an object oriented system, and components and aggregates are a field where
the benefits of object orientation are used. In the components, one can see how an object
is built by other objects, and that an attribute, besides from being a simple type as a float
or boolean, also can be an object, which in its turn is composed by other objects. An
attribute that is an object is called an attribute object. It is not quite analogous to

a free-standing object, as it lacks object head and an object identity, but apart from that

it contatins all the properties of a free-standing object in terms of methods, object graph
etc.

One example of an attribute object can be seen in the component object of a solenoid valve.
Here all the signal objects, two Di objects for limit switches, and a Do object for order,

are placed internally as attribute objects. Thus, we don't have to create these signals
separately. When the valve object is created, also the signals for the valve are created.
Another example of attribute objects is a motor aggregate that contains the component
objects for frequency converter, safety switch, motor etc. in the shape of attribute objects.

Another important property in object orientation is inheritance. With inheritance means that
you can create a subclass derived from an existing class, a superclass. The subclass
inherits all the properties of the superclass, but has also the possibility to extend

or modify some of the properties. One example is a component for a temperature sensor that
is a subclass to a general sensor object for analogous sensors. The only difference

between the temperature sensor class and its superclass is the object graph, where

the sensor value is presented in the shape of a thermometer instead of a bar. Another
example is a pump aggregate derived from a motor aggregate. The pump aggregate is
extended by a pump attribute object and also has a modified object graph that apart

from the motor control also displays a pump.

il YWX-PK1-IN-PY4-Givare -10] x|
File Methods signals Help

L[I | 0 |

Temperaturgivare

1300
o
Temperature (210 | 100.0 B -
=
=
Limits used Limit Husteresis Delaw
HighHigh [»] [l [950 | [00 || 00 |
High B [l (900 |[o00][00] A
low b4 [[00][00 | [00] 0.0 o :
|

Lowtow [[l [50][00][00

Fig Object graph for the class BaseTempSensor

Another property that we have introduced is the possibility to disable attributes. The
reason for this is that the component objects have to be as general as possible, to

be able to handle all variants of the plant component. A solenoid valve can, for example,
have a limit switch indicating valve open, but there are also solenoid valves with a

limit switch indicating valve closed, or valves with both switches or without switches.

Of course we could create four different component classes, one for each limit switch
alternative, but problems will arise when you start building aggregates of the components.
The number of variants of an aggregate will soon be unmanageable if you want to cover
all the variants of the components. If we, for example, want to create an aggregate
containing four solenoid valves, and there are four variants of each valve, there will

be 64 variants of the aggregate. If we want to build an aggregate containing four valve
aggregates the number of variants is 4096. The solution is to build a valve component
that contains both switches, but where you can disable one or both switches to be able

to handle all four limit switch variants. In this case attribute objects of class Di are
disabled, which means that they are not viewed in the navigator, ignored by the

1/0 handling. Also the in code for the valve component and in the object graph this is taken
into consideration. The configuration is made in the configurator from the popup menu
where you under ‘ConfigureComponent' can choose a configuration from the alternatives.

i%i PwR Navigator Yolume YolSaturnus5, sysansy on saturnuss -|0] x|

File Edit Functions View Options Tools Help

Bl 2| ¢|w|@||e|o] alk|a|a|m] 6

Tl T =
] Hode = Pl $PlantHier
1 Alldlasses & BaseMValve

Open Object...

Delete Object

Help

Help Class

ConfigureComponent b @EEiealtS
Copy Selected Object I |[Elliele]+l=al I_

1 3] — o Copy Selected Tree b | SwitchClosed |
| i
MoSwitches

Fig The ConfigureComponent method for a BaseMValve.

Basecomponents

ProviewR contains a number of component and aggregate objects for common plant components,
e.g. temperature sensor, pressure sensor, pressure switch, solenoid valve, filter,

motor and fan drives. They are gathered in the classvolume BaseComponent. A basecomponent
can be used directly, and this is probably the usual way to use them, but the idea is also

that you from the basecomponents create libraries and classes for the specific components

you are using in your plant.

For solenoid valves there are the baseclass BaseMValve. If you have a solenoid valve

of type Durholt 100.103 you create a subclass with BaseMValve as superclass,
Durholt_Valve_100_103 and insert the configuration that is valid for this valve. You

also add a link to a datasheet and fill in the Specification attribute, which makes it

possible to identify and order spareparts to the valve. When using a Durholt_Valve_100_103
object you don't have to do so much configuring and adaptations because this is already
made in the class. In this way, component archives can be built for the types of component
you use in your plant.

A problem arises when you use aggregates. An aggregate contains basecomponents from
the BaseComponent volume, and if there are specific subclasses for a component, you
want to use these. The solution is the Cast function. A basecomponent in an aggregate
can be casted to a subclass, given that the subclass is not extended with new attributes.
The casting means that the component fetches initial values, configurations, methods,
object graph etc. from the subclass, i.e. in all situations it acts as the subclass it is

casted to. The casting is performed from the popup menu in the configurator, where you

in the 'Cast' alternative get a list of all the available subclasses. By selecting a

subclass the component is casted to this.

Pressure switch

Let's have a look at a relatively simple component, a pressure switch, to examine how

it is built and how to configure it. For pressure switches there is the base component
BasePressureSwitch, that is a subclass to BaseSupSwitch. As temperature, pressure and
limitswitches are quite alike, they have a common superclass. BaseSupSwitch has also a
superclass, Component, that is common for all component classes. The class dependency for
the pressure switch class can be written

Conponent - BaseSubSwi t ch- BasePressureSwi t ch
The Component class

Component contains the attributes Desciption, Specification, HelpTopic, DataSheet,
CircuitDiagram, Note and Photo that thus are present in all components. In Description
there is place for a short description, in Specification you enter the model specification,
the others are used to configure the corresponding methods in the operator environment.

BaseSubSwitch
From the superclass BaseSupSwitch the attributes Switch, AlarmStatus, AlarmText, Delay,
SupDisabled and PlcConnect are inherited.

- Switch is a Di object for the pressure switch. It should be connected to a channel
object in the node hierarchy.

- AlarmStatus shows the alarm status in runtime.

- AlarmText contains the alarm text for the alarm sent at alarm status. The alarm text
has the default value "Pressure switch, ", but can be changed to some other text.
Note that if the default text is kept, this will be translated if another language
is selected. If it is replaced by another text, the translation will fail.

- Delay is the alarm delay in seconds, default O.

- SupDisabled indicates that the alarm is disabled.

- PlcConnect is a link to the function object in the plc code.

To the main object BaseSupSwitch there is a corresponding function object, BaseSupSwitchFo,
which also is inherited by the subclass BasePressureSwitch.

BasePressureSwitch

BasePressureSwitch doesn't have any attributes beyond those inherited from the superclasses.

The unique properties in BasePressureSwitch in the graphic symbol,
Components/BaseComponent/PressureSwitch, and the object graph where the switch symbol includes
a P for pressure.

Configuration

We open the configurator and create the main object, BasePressureSwitch, in the plant
hierarchy. In a suitable PlcPgm we insert a function object BaseSupSwitchFo and connect
it to the main object with the connect function. Select the main object and click with
Shift/Doubleclick MB1 on the function object. The function object contains the code for
the component, which for a BaseSubSwitch is an alarm that is sent when the switch signal
is lost.

File Edit

Functions \iew

COptions Tools Help

frooirooootntnint

BasePressure3witch

Description
sSpecification
HelpTopic
DataSheet
CircuitDiagram
Note

Photo

Switch Di
AlarmStatus
AlarmText
Delay
supDisabled
Pic Connect

Switch digital input
0
Pressure switch,
0.000000
0
DG-H1-Ple-W-P31

Fig Main object with corresponding function object

The pressure switch is to be viewed in a Ge graph. We open the Ge graph and fetch the
subgraph BaseComponent/SupSwitch from the palette. The subgraph is adapted to a
BaseSubSwitch object, and all we have to do is to connect it to the main object. Select
the main object in the plant hierarchy and click with Shift/Doubleclick MB1 on the

subgraph.

;P; Object Graph

Hist Event...
Block Events...
Mote

Open Object

Open Plc
RtMawvigator

Crossreferences]

Help Class

DG-HI-P51

sup3witchFo

P31

File Methods

signals

B [1 =

Value

Fig Graphic symbol, popup menu with methods and object graph

We have now accomplished a working component. We can of course also continue to configure
the method attributes with helptexts and links to photos, circuit diagrams and datasheet.

Control Valve

Let's have a closer look at a bit more complicated component, BaseCValve, that manoeuvers a
control valve. In contrast to the pressureswitch above, you also have to use
ConfigureComponent to configure the object, and there is also a simulate object that is

used to test the component.

Suppose now that we have a control valve, that is controlled by an analog output, and that gives
back the valve position in an analog input. Here we can use a BaseCValve. It has the analog
output ‘Order’ and the analog input 'Position’, i.e. the signals we request. Apart from these,
there are two digital input signals for switch open and switch closed, but these can be

disabled by a configuration.

Configuration

We place the main object BaseCValve in the plant hierarchy and the function object BaseCValveFo
in a PlcPgm, and link them together with the Connect function. The functionobject has an

order input pin that we connect to a PID object. We also have to state that our valve does not

have any switches, and we do this by activating 'ConfigureComponent/PositionNoSwitches' in the
popupmenu for the main object. When we open the main object, and in this the Actuator object,

we shall find a Position signal, but no input signals for the switches.

(™ PwR Navigator Volume VolSaturnus5, sysar (-] (0](x]|
File Edit Functions View Options Tools Help

4]

Description
Specification

HelpTopic
DataShest CWValveFo
CircuitDiagram s | Hz-order —— ord

MNote
Photo CVl

GraphConfiguration PositionTwoSwitches
Actuator BaseActuatord
Description

Specification

HelpTopic

DataSheet

CircuitDiagram

Mote

Photo

GraphConfiguration PositionTwoSwitches
Order fi%s)

Position A

SwitchOpen Di

SwitchClosed Di

Mode CompModeAM
MaxPosDiff 5.000000
DiffalarmDelay 10.000000
DiffAlarmText Fosition erraor,

SwitchAlarmDelay 10.000000
SwitchalarmText Switch error,
FosSwitchOpen 95,000000
PosSwitchClosed 5.000000

=
=
=
=
=
=
I'E—i
rE
=
=
=
=
=
=
=
8
8
8
8
8
=
=
=
=
=
=
=
=
=
=
=
=
—4=
—4=

IndError 0
IndWarning]
SwitchError 0
DiffPosError 0
FosEnum Between
SupDisabled]
PlcConnect DGE-H2-Plc-W-CW1-W-Actuator L
SimConnect
@ Vale Basevalve
—+= PlcConnect DG-H2-Plc-wW-CW1
—-= SimConnect Sim-PlcSim-W-CW1 [~

| | I | E|

Fig Main object with function object

PwR Navigator Volume Vol5Saturnus5, sysansv on saturnuss

File Edit Functions View Options Tools Help

& 2] s]alx oo a/maas]e]

(e v

7 Plant 1l o om $PlantHier [~]
"1 Hode =~ Hz $PlantHier
[Alldlasses M Pl PicPgm Open Object...

BaseCValve

Delete Gb]ect _

1 Sim $PlantHier
Help Class

TwoSwitches
Copy Selected Object »| SwitchCpen

Copy Selected Tree > SwitchClosed
NoSwitches
PositionTwoSwitches
PositionSwitchOpen

PositionSwitchClosed

|
i | |

Fig Configuring the main object with ConfigureComponent/PositionNoSwiches

In the HMI we place the subgraph BaseComponent/CValve in a Ge graph and connect it to the main
object.

We also want to be able to simulate the valve, to see that it works the way we want. For
simulation there is the function object BaseCValveSim that we place in a specific PlcPgm
for simulation, as this PlcPgm is not to be executed in the production system. The function
object is connected to the main object with the Connect function.

BaseCValve 3im
A

Fig Simulate object for the control valve

The configuration is finished and after building the simulation node we can test the system
and examine the result.

Pump drive

The next example is an aggregate, a pump drive with a frequency converter that communicates
via Profibus with the protocol PPO3. We will see how a component object in the aggregate,

in addition to the usual main object, function object and simulation object, also contains

I/0 objects to fetch and send data via Profibus.

The class we use is BaseFcPPO3PumpAggr, and the class dependency for this class is
Aggr egat e- BaseFcPPC3Mbt or Aggr - BaseFcPPO3PunpAggr

All aggregates have the superclass Aggregate that corresponds to the Component class for
components. The next superclass, BaseFcPPO3MotorAggr contains all the functionality for

the control. The pump class BaseFcPPO3PumpAggr extends the motor aggregate with a pump object
representing the mechanical pump, but this doesn't contain any signal or any additional

functionality. The pump aggregate also has its own object graph and graphical symbol.

Configuration

The main object BaseFcPPO3PumpAggr is placed in the plant hierarchy, and the function object,
that is inherited from the motor aggregate, BaseFcPPO3MotorAggrFo, is placed in a PlcPgm, and
they are linked together by the Connect function.

The main object has no less than 24 different configuration alternatives to choose between,
dependent on which of the components Fuse, Contactor, SafetySwitch, StartLock and CircuitBreaker
that are present in the construction. In our case we only have a contactor and a frequency converter
and we the choose the ConfigureComponent alternative CoFc.

Some components in an aggregate can have their own configurations. In this case the contactor
and the motor can be configured individually. Our contactor has two signals, a Do for order and
a Di for feedback, and this applies to the default configuration, i.e. we don't have to change

this. The motor, however has a temperature switch, and thus we select the motor component
and activate ConfigureComponent/TempSwitch in the popup menu.

The next step is to connect the signal objects to the channel objects. The contactor has a

Do for order and a Di for feedback that is to be connected to suitable channels in the node

hierarchy. The motor has a temperature switch in the shape of a Di that also should be

connected. The frequence converter contatins four signals, StatusWordSW (li), ActSpeed (Ai),
ControlWordCW (lo) and RefSpeed (Ao). These signals are exchanged with the frequency converter
via Profibus with the protocol PPO3. There is a specific Profibus module object for PPO3,
BaseVcPPO3PbModule, that contains the signals for PPO3 communication. The module is configured
by the Profibus configurator (see Guide to I/0 System) and is connected to the

FrequencyConverter component in the pump aggregate. As the component object and module object
are adapted to each other, you don't have to connect each signal, you connect the component to

the module instead. By selecting the module object and activating Connectlo in the popupmenu

for the FrequenceConverter component, the connection is made.

We also put the subgraph Component/BaseComponents/FccPPO3PumpAggr in an overview graph and
connect this to the main object. Furthermore we place the simulate object
BaseFcPPO3MotorAggrSim in specific simulate PlcPgm and connect it to the main object.

Mode

The pump aggregate contains a Mode object in which you configure where the pump is
controlled from. It can have the modes Auto, Manuel or Local which means:

- Auto: the pump is controlled by the plc program.
- Manual: the pump is controlled by the operator from the object graph.
- Local: the pump is controlled from a pulpet.

In the mode object you can configure the modes that apply to the pump in question.

12.1

A Component case study

In this section we are going to use components and aggregates to program the control of
the level in a water tank,

Process

The process that we will control is shown in figure ‘Level control'. The water is pumped from
a reservoir to a tank. Our task is to control the level in the tank. To our disposition we

have a level sensor and a control valve. In the system there is also a return pipe with a
solenoid valve that is always open during the control.

We note that the tank is 1 meter high, which will be reflected in various min and max values
in the configuration.

m— | start || Stop |

A

SetValue

Leve|

=~

Fig Level control

We can identify the following components and aggregates:

- a contactor operated pump, with circuitbreaker, contactor, overload relay and safetyswitch
- a control valve with two limit switches for open and closed

- a level sensor

- a solenoid valve with two limit switches for open and closed valve

The following component object correspond to the components in the plant:

- Pump BasePumpAggr

- Control valve BaseCValve

- Level sensor BaselevelSensor
- Solenoid valve BaseMValve

Configuration in the plant hierarchy

The components are created under the hierarchy LevelControl. Under this we place a PlcPgm
'Plc' that will contain the code for the control, and a PlcPgm 'Simulate' that will contain

the code needed for simulation and testing of the program. We also create three Dv objects
to start, stop and reset the control program, Start, Stop and Reset.

4 PWR Navigator Volume VolPwrDemo, pwrp on pwrdemo46 (on pwi (2 |[@)|

File Edit Functions View Options Tools Help

FAE B R CY S [l EY RY EY
[Supervision (a] & LevelControl $PlantHier -~
= Components O Pl PlcPgm
[BaseComponent H O Simulate PlcPgm
8 BaseC3Waywalve 3 Start Dv
<3 BaseCDamper < Stop Dv
BaseC\Valve & Reset D
8 BaseCircuitBreaker & Pl BasePumpAgagr
& BaseContactor & MVL BaseMvalve
& BaseDirvalve & LCL BaselevelSensor
<8 BaseElHeater [~) 4 OVl BaselValve v)
[<] in | El [<] i | E|

Fig Plant configuration

Pump

The pumpdrive consists of

- a circuitbreaker with one Di

- a contactor with a Do for order, and a Di for feedback
- a safety switch with one Di

- a motor without any signals

For the pump, a BasePumpAggr object is created with the name P1.
The ConfigureComponent alternative that corresponds to the construction is CbCoOrSs

(CircuitBreaker, Contactor, Order, SafetySwitch) and we select P1 and activate this
alternative in ConfigureComponent from the popupmenu.

™ PwR Navigator Volume VolPwrDemo, pwrp on pwrdemo46 (on pwrd6) [-|(0](x]
File Edit Functions View QOptions Tools Help

HBABERNOREIRNERE

{é BaseCircuitBreaker E] @Iﬁ_—l LEF:.EIEDHUD' $:|I?:EE:;HHI1H E]
<% Baselontactor i :

<3 BaseDirvalve % ggilate Elwqum Bl
% BaseElHeater & Stop D

<% BaseFanAggr £} Reset Dw

3 BaseFcPPO3 L
<% BaseFcPPO3FanAggr
<% BaseFcPPO3MotorAggr
<8 BaseFcPPO3Pumphggr
3 BaseFcPPOS

<% BaseFcPPOSFanAggr
<% BaseFcPPOSMotorAggr
<8 BaseFcPPOSPumphggr

rasePumphggr
M p ObjectMame P1
= p Description
= p Specification
= p HelpTopic
= p DataSheet
= p CircuitDiagram

<& BaseFilter 3 b Maie
& BaseFlowSensor | =} Photo
gl b GraphConfiguration ChCoOrSs 3
& BaselevelSensor
. = Ready]
& BaselevelSwitch
= Extinterlock 0
<8 BaseM3Wayalve
= localMode 0
<% BaseMDamper .
= IndWarning]
& BaseMValve
& BaseManValve = IndError d
B » RunTimelounter RunTimeCounter
<8 BaseMotordggr
] @ » Contactor BaseContactor
<8 BaseMotorincrDecriggr o S
@ » CircuitBreaker BaseCircuitBreaker
<8 BaseOverloadRelay : :
& BasePositSensor & » SafetySwitch BaseSafetySwitch
& » OverloadRelay BaseOwverloadRelay

% BasePressureSensor

% BasePressureSwitch B » Mode CompModeD B
<% BasePropValve 4 » Motor BaseMotor
= p SupDisabled 0
<% BaseSafetySwitch = P!CCUHHEC’E
3 BaseSensor —+=p SimConnect
&3 RacaSiinSwiterh IEJ ﬁ [3 PUFI"IP BaseF’ump l?]

| | I | El | | Il | El

Fig Pump configuration

The components Contactor and Motor have their own configurations, and for them we also have

to activate ConfigureComponent. We select Contactor and select ConfigureComponent/OrderFeedback
as we have one signal for order and one for feedback. For the Motor object we activate
ConfigureComponent/NoTempSwitchOrSensor, as the motor doesn't have any signals.

All the signals in the pump aggregate have to be connected to channel objects in the node
hierarchy. We find the following signal objects and connect them to suitable channels:

P1.Contactor.Order Do contactor order
P1.Contactor.Feedback Di contactor feedback
P1.CircuitBreaker.NotTripped Di circuitbreaker not tripped

P1.SafetySwitch.On Di safety switch on

P1.0OverloadRelay.Overload Di overload relay tripped

Control valve
The control valve has an actuator that is controlled by an analog output signal, and limit
switches for open and closed valve.

We create a BaseCValve object with the name CV1. The ConfigureComponent alternative that
corresponds to our construction is TwoSwitches.

The following signals are connected to suitable channels in the node hierarchy:

CV1.Actuator.Order Ao for order
CV1.Actuator.SwitchOpen Di for switch open
CV1.Actuator.SwitchClosed Di for switch closed

Level sensor
For the level sensor we create a BaselLevelSensor object with the name LC1. This doesn't
have any ConfigureComponent method, but there are some other properties to configure.

The sensor object has alarm limits for HighHigh, High, Low and LowLow and these are
stated in the attributes LC1.LimitHH.Limit, LC1.LimitH.Limit, LC1.LimitL.Limit and
LC1.LimitLL.Limit. We set the limit values to 0.95, 0.90, 0.10 and 0.05. We also set the
upper limit for presentation of the value in LC1.Value.PresMaxLimit to 1. This will affect
the range in bars and trends.

Solenoid valve
The solenoid valve is controlled by a digital output and has feedback in the shape of
digital inputs for limitswitch open and limitswitch closed.

For the solenoid valve we create a BaseMValve object with the name MV1.

In ConfigureComponent we activate TwoSwitches that corresponds to the current configuration
with both limitswitches present.

The signals that are to be connected to channels in the nodehierarchy are:

MV1.Order Do for order to open the valve.
MV1.SwitchOpen Di for limitswitch open.
MV1.SwitchClosed Di for limitswitch closed.
Plcprogram

The next step is to write the plc program for the level control, in which the function
objects for the components will be inserted:

- BaseMotorAggrFo for the pump P1

- BaseCValveFo for the control valve CV1

- BaseMValveFo for the solenoid valve MV1
- BaseSensorFo for the level sensor LC1

We create the function objects and connect them to their main objects, by selecting the
main object and activate Connect in the popupmenu for the function object.

We will also use a PID controller to control the level in the tank. The controller will
have the value from the level sensor as process value, and set out the outvalue to the

control valve. The inflow to the tank will then be adjusted to reach the desired level.
The controller is created with the functionobjects Mode and PID.

The program is built around a Grafcet sequence with four steps. See Fig Plc program

1. The initial step IS0 is the resting position when the pump is turned off and all the
valves are closed.

2. When the Start Dv is set from a button in the operator graph, step SO is activated.
Here the pump is started as the sorder OrdO is connected to the start inputpin of the
functionobject for the pump P1. When the pump is started, the On outputpin of the pump
object is set, and the activity is moved to the next step S1. Note that the sorder
OrdO continues to be active, i.e. the pump is turned on until the reset in step S2.

The value of the error outputpin Err of the pump object is set into the Reset Dv. Reset
is stated as ResetObject in the PlcPgm object, and all the sequences in the PlcPgm wiill
be reset when Reset is set, i.e. the sequence will return to the initial position

and the pump and the control will be turned off.

3. S1is the working step, where the controller is active, controlling the level in the tank.
As long is S1 is not active, the force input of the mode object is set, and the
controller has 0 as outvalue. When the step is active, the controller fetches the
processvalue from the output of the sensor object LC1, and the setpoint is set into
the mode object LC1_Mode.SetVal from the operator graph. The outvalue of the
controller is connected to the order inputpin of the control valve.

The order Ord1 is also connected to the order input of the solenoid valve, which
opens the valve.

4. Step S1 is active until the Stop Dv is set from a button in the operator graph. When
the step is left, the controller is again forced to zero and the control valve is closed.
Also the solenoid valve is closed. The step S2 is active for a moment, reseting the
sorder OrdO, thus stopping the pump. Then the sequence returns to the resting position
1S0.

The Grafcet sequence also requires a reset object, the Reset Dv, to be inserted in the
ResetObject attribute of the PlcPgm.

The mode object LC1_Mode and the controller LC1_PID requires som additional configuration.
In the mode object

- OpMode = Auto to start the controller in auto mode

- MaxSet = 1, maximum setpoint value is the height of the tank, 1 m

- SetMaxShow = 1, also the height of the tank

- SetEngUnit = m, meter

- PidObjDid = LevelControl-Plc-W-LC1_PID, the name of the PID object

In PID object

- PidAlg = PID

- Gain =100

- IntTime =10

- MaxGain = 200

- SetMaxShow =1

- SetEngUnit =m

- ModeObjDid = LevelControl-Plc-W-LC1_Mode, the name of the mode object

D

Start

D

Stop

ResDv | Start

Dv

Reset

ResDv | Stop

ResDv | Reset

Fig Plc program

Simulate program

CValveFo
ord
vl

IS0 —
plords || — setdp | P1.Mode.0pauto
T0
MotorAggrFo
%0 slodo [——est o=+,
err =
Pl !
J
|
| ID | ord3 | 5 I_t_ SetDv | Reset |
: =1 DSup | DSup0 | Pump timeout, start sequence reset
I
I
I
I
I
Il SensorFo
Tl
T m—— VAL L FID
LC1 Mode PV ouT
PV SV SV
sl = Ord1 Inv fol FoV FOV
Inw0 = 0ouUT for for
! LC1_Mode LC1_PID
1
MvalveFo b e e e e e e e e e o o
T2
[—— ord
M1
>
T3

We create the simulate program to be able to test all the functions in the program, alarm
handling and operator graphs before the commissioning. You can also use it for education and

demonstration.

The simulate code is put in a separate program 'Simulate’, that should not execute in the
production system. In this program, the simulation objects for the components are created:

- BaseMotorAggrSim for the pump P1

- BaseCValveSim for the control valve CV1

- BaseMValveSim for the solenoid valve MV1
- BaseSensorSim for the level sensor LC1

The function objects are connected to their main objects, by selecting the main object and
activating Connect in the popupmenu of the function object.

The simulate objects for the pump, control valve and solenoid valve don't have any in or

output pins, they work solely against data in the main object where they read output signals
and set suitable values into the input signals. The simulate objects also have an object graph,
from which you can influence the simulation and cause different faults in order to check that the
errors are handled in a proper way, and that the operator is informed via process graphs and
alarms.

The simulate object for the level sensor, however, has an input pin, and for this we have

to calculate a simulated level in the tank. A change of the level is determined by the input

flow minus the output flow divided by the area of the tank. If we assume that the input flow

is proportional to the order output to the control valve (CV1.Actuator.Order), and subtracts

the out flow throgh the solenoid valve when this is open. The change in flow is accumulated

in the OA1 output of the CArithm, which is sent forward to the simulate object of the level
sensor LC1. In LC1, some noise is added to the signal to get a more realistic appearence. This
is achieved by setting LC1.RandomCurve to 1, and LC1.RandomAmplitude to 0.01.

MotorAggrsim
P1

BaselValveSim
V1

BaseMvalvesim

M1
Select CArithm BaseSensorsim
so | cvl Actuatororder | f——HIG VALf——={ sub [——=—Al OALj—=—
Di [P1.Contactor.Feedback | f—————con —{ subd | A2 LC1
Selectd RandomCurve 1
OAL +=0.001 * ALl *AZ2: .
if [QAL = 2) RandomAmplitude 0.1
QAL = 2,
Select i { OAL < 0)
| Di | LevelControl-Mv1.SwitchOpen | |——— con WAL 0al =0
High 30 Selectl CAritS

ScanTime | ScanTimes |

Fig Simulate program

Process graph

The process graph for the level control is drawn in Ge. We find the graphic symbols for the
components in the Ge palette:

- Component/BaseComponent/PumpAggr for the pump

- Component/BaseComponent/CValve for the control valve

- Component/BaseComponent/MValve for the solenoid valve

- Component/BaseComponent/LevelSensor for the level sensor

The symbols have the dynamic HostObject, which means that they have a preprogrammed dynamic
that is connected to different attributes in the object. You only need to insert the object

name of the main object in HostObject.Object, or connect them by selecting the main object

and click with DoubleClick Ctrl/MB1 on the symbol.

The default dynamic doesn't include opening the object graph when clicking on the symbol.
We add this function by opening the attribute editor for the symbol and adding OpenGraph
in action (if no OpenGraph.GraphObiject is stated, the object graph is opened).

We also assemble a tank, from a rectangle and two halfellipses, on which we set fill and gradient
properties and also group. On the group, the dynamic FillLevel is set, and FillLevel.Attribute

is connected to the value of the level sensor, LevelControl-LC1.Value.ActualValue. The

min and max values for FillLevel are setto 0 and 1.

To the left of the tank a slider is placed, from which the setpoint of the level is set.

It consists of a Slider/SliderBackground3 and a Slider/Slider3. The slider is connected

to the setpoint in the mode object LC1_Mode, i.e. LevelControl-Plc-W-LC1_Mode.SetVal. The
min and max values for the slider are setto 0 and 1.

For the setpoint, also an input field 'SetValue' is created, which is connected to the same
value as the slider above. The process value of the level is displayed in the 'Level field,
which is connected to the value of the level sensor.

The controller symbol is fetched from Process/PID_Controller in the palette. It has no
dynamic as default, but we want the object graph for the mode object to be opened when
clicking on the object, so we add Command to Action with the command

open graph /class/instance=Level Control -Pl c-WLC1_Mbde

The pushbuttons for Start and Stop are of type Buttons/SmallButton. SmallButton has ToggleDig
as default action, but we want SetDig instead, as the Start and Stop signals are reset by

the plc program. We remove Inherit in Actions to avoid ToggleDig and add SetDig instead, and
connect to the Start and Stop Dv.

The trend curve is fetched from Analog/Trend in the palette. The process and set values are

to be displayed here, i.e.

- Trend.Attributel is set to LevelControl-LC1.Value.ActualValue (the value of the level sensor).

- Trend.Attribute? is set to LevelControl-Plc-W-LC1_Mode.SetVal (the set value in the mode
object).

Finally we draw some pipes and lines and the graph is finished.

We also enter File/Graph attributes and insert the coordinates for the upper left and lower
right corners in x0,y0 and x1,y1. DoubleBuffered is set to 1 and MB3Action to PopupMenu.

Setvalue |:|m—u:1 Start | [Stop |
m

- ﬂ

Fig Graphic editor

Simulation

To look at the result of our programming effort, we start the simulation.

When we open the graph, both valves are colored white, which marks that they are closed.
The pump is not started, which is marked with gray color and the triangle in the pump

symbol doesn't point in the flow direction. The tank is colored white, i.e. it is empty, and

the levelsensor flashes red as the level is beneath the LowLow level in the level sensor object.

By pressing the start button, we leave the resting step in the Grafcet sequence, and activate
the step that starts the pump (S0). When the pump is started, it is colored blue and the
triangle points in the flow direction. In this step, also the solenoid valve is opened and
colored blue. When the pump has started, the sequence proceeds to the working step S1.

We set a set value with the slider to approximately 0.3 and hopefully the controller starts

to work. Eventually, some adjustment of the controller parameters are needed, and the controller
graph is opened by clicking on the controller symbol, which opens the object graph for the

Mode obiject. In this, we click on the PID button to open the object graph of the PID object.

Here we can adjust the gain (Kp) and integration time (Ti).

(% Demo-Process-LevelControl-Plc-W-Lc[—](o](x]| = Demo-Process-LevelControl-Plc-W-LC1_PID (on pwr46) @)
Mode [_File Methods Help
Man ® i - — 7] DDDDEE@ND
R O Proc 0.283 . =
Set 0.283
coscord @ | | |out 30.773
S Outbx -0.234
Extern SetValue Error -0.009
M | |Kp 100.000
0.000 Ti 10.000 T
— — || Td 0.000 100.0
D 3.000 %
Force 00 a a Bg =
B | ||Bias 0.000
Inverse &
- r:'u %M — | | Integration)
Set value Pracess value Gut value Control O 0.0
[o293 | o283 || s1006 |||PidAlg |[PID Mode

Fig Object graph mode and PID object.

Let's have a look at what we can do with the components in the process graph.

Level sensor
If you rightclick on the level sensor, a popup menu is opened with the methods that

are defined for the sensor. With OpenPIc you open plc trace for the function object of

the component. With RtNavigator the object is looked up and viewed in the navigator, with
Trend a trend curve for the level is displayed and with OpenGraph the object graph is
opened. The object graph can also be opened by clicking on the symbol.

The upper part of the object graph for components and aggregates has a similar appearance.
There is a menu where you under 'Methods' can activate the methods of the component. Under
'Signals' you can see the signals in the component and open the object graph for them. For
aggregates you can also see the components and open the object graph for them under
‘Components'. There is also a toolbar with pushbuttons for the methods, and two text fields

that display Description and Specification for the component. In the lowest row in the graph

the Note message is viewed if such a message is inserted (by the Note method).

Furthermore the level is displayed as a number and with a bar, and the alarm limits are also
viewed. The alarm limits can be adjusted with sliders and enabled or disabled by check boxes.

In the upper right corner of the graph there is a button marked with an 'S'. It is only visible
in simulation mode (i.e. IOSimulFlag in the IOHandler object is set) and it opens the

simulate graph. From the simulate graph you kan influence the simulated signal. We have already
configured Random with amplitude 0.01, but you kan also add a sinus curve or a sawtoothed curve
to the signal.

%

o Demo-Process-LevelControl-LC1 (on pwr46) (=](o](x]| ¥ Demo-Process-LevelControl-Simul[—|(o](x]
File Methods Signals Help [l Fie Methods Help
BREREEREN R S| omea
‘LwelSensnr ‘ 0.00

0.00

Level m 10 0.01

10.00

0.00

D

029

LII'I'I“I Super\rigiondigab|ed . a 10 20 30 40 50 a0 70 80 a0 100
Uged Limit Hysleresis Delay

Hightigh b1 [l [095 | [00 || 00 |
High B 0% |[00 [[o00 |
Low B B [ow |[oo |[o0 | 0.0
LowLow Bl (o005 |[00 [[o00 |

Fig Object graph for the levelsensor and simulate graph
Control valve

The object graph for the control valve has indicators for the limit switches and shows
the order output to the valve as a bar.

You can take over the valve in manual mode, i.e. the valve position is now adjusted with
the slider 'Manual' instead of beeing fetched from the outsignal from the controller.
The control loop is now out of order and the water flow is adjusted from the slider.

From the simulate graph you can for example influence the simulation of the limit switches.

If order is 0 and switch closed are not affected, you receive a limit switch alarm and a

red flashing symbol. At simulation the simulate objects set the correct values into the
limitswitches, but this can be overridden from the simulate graph. By pushing ‘'Manual Control'
the switch is controlled from the graph instead, and by zeroing the limit switch you can

check that the limitswitch supervision works.

Fig Object graph for the controlvalve and simulate graph

Solenoid valve

= Demo-Process-LevelControl-CV1 (on pwr46) [=][0](x]| ¥ Demo-Process-LevelControl-Simulate-W-C\(-](0](x]
|__File Methods Components Signals Help |
N [= = e T e (Y= e | = (i A G e
| | Simulate BaseCValve
| | Manual control Manual value
SwitehOpen
& 100.0 SwitchClosed
E Position
SwitchOpen |
SwitchClosed N
Switch error .
Force difference error
Made
® .
O '
Actuator [|
Valve

The object graph for the solenoid valve displays limit switches and order signal
with indicators. The valve is switched to manual control by clicking on the Man button,

and can now be maneuvered by the Open and Close buttons.

From the simulate graph you can, as for the control valve, influence the simulation of the

limitswitches and trigger a switch error alarm.

= Demo-Process-LevelControl-MV1 (on pwr46) (<](@)(x)] # Demo-Process-LevelControl-Simulate-W-M(-)(o](x]|

File Methods Signals Help | File Methods Help
] (2] A 0 [e]] Ell neme

| | Simulate BaseMValve

| | Manual control Manual value

Switc hOpen I_ I_
M SwitchClosed | [|

SwitchOpen W
SwitchClosed]
Order d
Interlock]
Made Man
® o
O [ow] @

Supenision dissbled [}

Fig Object graph for the solenoidvalve and simulate graph
Pump

The object graph for the pump shows a schematic drawing of the components in the pump, and
also a status indicator for each component. By clicking on a component, you open the object
graph for the component.

With the 'Man' button you can switch the mode to manual and start and stop the pump from
the Start and Stop buttons in the graph.

From the simulate graph various events can be simulated.

- 'SafetySwich on' simulates that someone activates the safety switch. This causes the pump
to turn off, and the pump symbol is colored yellow. Also the Err outputpin of the function
object is set. As This is connected to the Reset Dv the sequence is reset and the control is
turned off.

- 'CircuitBreaker tripped' simulates that the circuitbreaker has tripped.

- 'Contacor feeback lost' simulates that the contactor feedback is lost.

- 'OverloadRelay tripped' simulates that the overloadrelay has tripped.

¥ Demo-Process-LevelControl-P1 (on pwrd6) [-|(0](x](Demo-Process-LevelContro (- |(o](x]]

Flle Methods Components Signals Help File Methods Help

L 0] [l 5 [A = A=A
\ | Simulate BaseMotorAggr

CircuitBreaker tripped

!—(_\—I Ready
\!/ e Contactor feedback lost
| OverloadRelay tripped
e SafetySwitch on
O O
@ [stop Starts
Local @ Run

1 1]
Circuit breaker] = 5
|
EEE
Contactor [] —
266

Overload relay []

Safety switch]

S

Fig Object graph for the pump and simulate graph

13 Alarms and events

The event handling in ProviewR displays alarms, information messages and events in two lists,
the alarm list and the event list. The alarm list contains active or unacknowledged alarms and
info messages, and supplies operators and maintainers with information about the current state
of the process. The event list contains events, for example when an alarm is activated,

and gives a picture of what has happened in the system.

Alarms and events are generated by supervision objects. The most common are DSup and ASup
objects that supervises digital and analog signals. The supervision objects are scanned by the
event monitor that sends messages about alarms and events to different outunits, eg the

alarm and event list Xtt.

13.1 Alarms

An alarm is a state changed in the process or control system that requires attention from
operators. The alarm is presented in an alarm list, often with a audible signal, and the
operator has to acknowledge the alarm before the audible signal disappears and the alarm is
removed from the list. Also the alarm state has to return before the alarm is removed.

An alarm consists of three events

- the alarm enters active state.

- the alarm state is returned from active to normal state.
- the alarm is acknowledged by an operator.

Priority

The priority of an alarm can be A, B, C or D, where A has the highest priority. The priorities
have different color marking. A alarm are indicated with red, B alarms with yellow, C alarms
with blue and D alarms with violet.

Type
There are seven different types of alarms the can be used to address alarms to different
categories of receivers.

Alarm Ordinary alarm for plant operators.
MaintenanceAlarm Alarm for maintenance personnel.
SystemAlarm Alarms for system manager.
UserAlarm1-4 User defined alarm types.

The alarm type is matched with the EventSelectType in the OpPlace object, and the alarm list
will only display the selected alarm types.

13.2 Info messages

The info messages are similar to alarms but doesn't have any priority. It can also be configured
to only be displayed in the event list, not in the alarm list.

Type

13.3

13.4

There are two types of Info messages, Info that is indicated with white color, and InfoSuccess
that is indicated with green.

Events

An event is a change in the process or control system that is logged in an event list. They
are used to see the history of process and for example draw conclusions about the chain of
events if something has gone wrong.

One type of events are alarms that becomes active, returns and are acknowledged, but also other
events can be logged in the event list.

Supervision objects

Alarms and events are configured with supervision objects, primarily DSup and ASup objects.

A DSup object supervises a digital object, and generates an alarm or event when the digital
signal indicates alarm state. An ASup object supervises an analog signal, and generates alarms
or events when the analog value exceeds an alarm limit. Other supervision objects are CycleSup
the supervises cyclic processes, NodeLinkSup that supervises network links to other nodes, and
SystemSup the supervises functions in the control system.

DSup and ASup

DSup and ASup are the most common supervision objects and supervises digital and analog
signals. They also exists in the form CompDSup and CompASup used in components and aggregates.

The DSup and ASup objects can either be placed in the plc code, and connected to the digital
or analog value that is to be supervised, or placed in the plant hierarchy, for example under

a signal. If the Sup object is positioned below a signal, ActualValue will be supervised as

this is automatically inserted into Attribute in the Sup object. If the Sup object is placed

under another object Attribute has to be filled in manually to indicate which attribute in the
object should be supervised.

The DSup and ASup object can generate alarms, info messages and events. The configuration of
the attributes EventType, EventPriority and EventFlags will decide which types of alarms
and events are generated.

EventType

EventType configures which type of alarm or info messages are generated. The different alarm
types are Alarm, MaintenanceAlarm, SystemAlarm and UserLarm1-4. Info messages can be Info
or InfoSuccess.

EventPriority

EventPriority configures the priority for an alarm. The priority can be A, B, C or D. For info
messages priority has no significance.

EventFlags

EventFlags is a bitmask with several options that decides which events will be generated and
where they will be distributed. See Object Reference Manual for more info.

Various types of alarms and events

A alarm with beep

EventType Alarm
EventPriority A
EventFlags Return, Ack, Bell

B alarm with beep

EventType Alarm
EventPriority B
EventFlags Return, Ack, Bell

Info message displayed in the alarm list

EventType Info
EventPriority -
EventFlags Ack, Bell, Infowindow, Returned

InfoSuccess message displayed in the alarm list

EventType InfoSuccess
EventPriority -
EventFlags Ack, Bell, Infowindow, Returned

Info message displayed only in the event list

EventType Info
EventPriority -
EventFlags Returned

NodeLinkSup

A NodeLinkSup object supervises the network link to another node. If link is disconnected
an alarm is generated.

CycleSup

A CycleSup object supervises a cyclic process or thread. If the scan of the process is delayed
an alarm is generated or the emergency break is set. CycleSup are used to supervise plc
threads but can also be used for other processes.

SystemSup

In the MessageHandler object there is an array of SystemSup objects supervising functions in
the control system. An alarm or info message is generated at the following events

- A network link is disconnected.

- At system start.

- At restart.

- At restart of an outunit for the message handling.

- System emergency break.

- When system status indicates warning or error.

- When the errorcount of an IO device has exceeded soft or hard limit.
- When alarm quota is exceeded.

13.5

13.6

13.7

13.8

The SystemSup object can be edited to change alarm texts, priorities etc, or to disable unwanted
alarms.

Event monitor

The server process handling alarms and events are called the event monitor and has the name
rt_emon. It's configured with a MessageHandler object in the node hierarchy.

Configurations in the MessageHandler objects are for example EventListSize, that is the number
of internally stored events, and EventLogSize that states the size of the event log, i e the
number ov events stored on disk.

The event monitor scans all sup objects and send information about alarm and events to different
outunits, for example the alarm and event list. When an outunit is started, all events in the
internal list is sent to the outunit, and the new events are sent when when they occur. Also

a status message is sent whit all active or unacknowledged alarms to ensure that the alarm

list is correctly updated.

Alarm blocking

If a part of the plant is closed, the alarms from that part can be blocked. This is done

from the navigator by opening the popup menu for an hierarchy and activate 'Block events'.
A priority is selected for the blocking, and alarms with this priority and lower priority

will be blocked. A list of active blockings can be opened from a button in the operator
window, and from here blockings also can be removed.

Suppression of alarms

A common alarm system problem is that one fault give raise to a cascade of alarms, that makes
is impossible for the operator to find the root cause. This can be avoided by suppression
of alarms that are not relevant in a specific situation.

Suppression is made with the function object SuppressSup. A supervision object is stated in
the object, and when the input is high, the alarm from the supervision object is blocked.

The input can for example be connected to the Active output of a DSup object as in the
example below.

Suppresssup Plc-W-DSup3

4—| DSup | DSupd | Emergency break t Suppresssup Plc-W-D5up2

Suppresssup Plc-W-DSupd

SuppressSup Plc-W-D5up5

Suppresssup Plc-W-DSupb

Fig Alarm suppression

Outunits

13.8.1 Alarm and event list in Xtt

The alarm and event list in the operator environment can be opened from buttons in the
operator window, and also with the xtt commands

xtt> show al arnli st
xtt> show eventli st

In the EventSelectList attribute of the OpPlace object you state hierarchies from where alarm
and events should be displayed.

Alarm and event list in an XttMultiView

There is a function that creates copies, so called satellites, of the alarm and event lists.
These can be usee to display the alarm or event list in a XttMultiView. In the XttMultiView
configuration, Action.Type is set to AlarmList or EventList.

AlarmView

An alarm list satellite can also be combined with an AlarmView, that will categorize the alarms

and display them under different maps in the list. The maps are configured by creating
AlarmCategory objects under the AlarmView object, one for each map. In the AlarmCategory object
the hierarchies, priorities or event types for the alarms in the map. A map containing active

or unacknowledged alarms are marked with a color that shows the priority of the alarms in the

map. Also the number of unacknowledged alarms under the map is displayed.

An AlarmView object has to be stated in the AlarmView array of the OpPlace object.
An alarm list with an AlarmView can be opened with the command

xtt> show alarnlist satellite /al arnvi ew=

H12 Alarm View (on copper-arrow)

File Functions View Help

viglala|l ol

2 Furnacel
BWa i 21-11-10 12:09:33 Furnace 1, high temperature H24-F1-ZoneTemperature
Ba w4 21-11-10 12:09:19 Furnace 1. low pressure H24-F1-PressureSwitch
=il Furnacez
] Easl Furnace3

Fig Alarm list with an AlarmView

It can also be displayed in an XttMultiView by stating the AlarmView object in
Action[].Object[0] in the XttMultView object.

AlarmTable

The AlarmTable object makes it possible to display the latest alarms in a process graph.

The AlarmTable object i placed under the OpPlace object and the alarm list for the OpPlace

is copied to arrays in the AlarmTable object. There are arrays for EventText, EventName, Time,
EventPrio etc, that can be displayed in a table in the process graph. With the Member attribute
a selection of alarm from specific hierarchies can be made, but the selection is limited by

the EventSelectList of the OpPlace object.

. 21-11-10 12:09:33 | Furnace 1, high temperature H24-F1-ZoneTemperature

B[21-11-10 12:09:19 | Furnace 1, low pressure H24-F1-PressureSwitch

Fig An AlarmTable object displayed in a process graph.

13.8.2 Alarm and event list in the web interface

In the menu of the web operator window there are buttons to open the alarm and event lists.
The hierarchy selection of alarms is stated in EventSelectList in the WebSocketServer object.

13.8.3 Eventlog

In the event log all events are stored in a database. This is configured by setting the size
of the event log in EventLogSize in the MessageHandler object. From the operator window, a
dialog for viewing and searching for events, can be opened.

The event log is handled by the server process rt_elog and is placed in $pwrp_db/rt_eventlog.db.
13.8.4 History storage of events

Events can also be stored in the history database. The configuration is made with a SevHistEvent
object where you state which event to store and for how long.

Store event is viewed by the Alarm and Event Analyser.
Read more in Guide to storage enviroment

14

14.1

Communication

Internal communication

The internal communication in ProviewR sends information about volumes, objects,
alarms, events, history data etc. between processes and nodes. There are three
different protocols for alarm handling, net handling and history data, the all are
based on Qcom.

Qcom

Qcom is a message bus that sends queued messages between processes. Communicating
nodes all have to share the QCom bus, and a node can only attach one bus. The bus

is configured in the BusConfig object by stating the bus identity, a value between

1 and 999.

You also have to configure which nodes are to communicate with each other. With the
default configuration, all nodes in the same project will communicate, and additional
nodes in other project is configured with FriendNodeConfig objects. This can for example
be process stations that are mounted by operator stations.

If you have a project with several nodes, and don't want them all to communicate with
each other, you can set QComAutoConnectDisable in the BusConfig object, and specify
the communcation links with FriendNodeConfig objects.

All Qcom messages are sent with acknowlegement. If the acknowlege doesn't arrive, the
message is resent with double timeout. After a number of resends without reply the link

is regarded to be down. Dependent on the type of net and transmission speed, the timeouts
might have to be adjusted. This can be done with the ResendTime attributes in the
NodeConfig and FriendNodeConfig objects.

See the document QCOM for more information about Qcom.

Nethandler

The nethandler sends information about volumes and objects between nodes, for example
the volumes in a node, the parent, children or siblings of an object, or the content

of an object or attribute. Also subscriptions are set up via the nethandler, that is

data cyclically sent from one node to another, usually from process stations to operator
stations. The processes for the net handling are rt_neth, rt_neth_acp and rt_tmon.

Eventhandler

The event handler scans all the supervision object in a node and sends alarms and

14.2

14.2.1

events to outunits, for example to the alarm and event lists in the operator enviroment.

They send acknowlegdements back to the event handler. Exactly which alarms and event that
is sent to an outunit is configured in the select list. The select list for the operator
environment is found in the the OpPlace object. Only events and alarms below the stated
hierachies are sent. The process of the event handling, rt_emon, is configured with a
MessageHandler object.

Historical data storage

The historical data storage means that data is sent from process stations and stored in

a database in a storage server. The server process rt_sevhistmon in the process station
scans all attributes marked for storage, fetches the corresponding values and sends them

to the sev_server process that stores them into the database. When curves of historical data
are to be displayed, a request is sent from the operator environment and a suitable

selection of points are fetched from the database and sent to the operator environment.

See chapter Data Storage

Web and app communication

The web interface and Andriod application fetches information from the ProviewR realtime
database through the server processes rt_webmon, rt_webmonmh and rt_webmonelog. This
communication is configured by the WebHandler object.

Status server

The Runtime monitor and Supervision center fetches information from the Status server.
This communication is based on http and soap, and is configured with the StatusServerConfig
object.

Remote

The Remote concept in ProviewR is a way to standardize the methods of communication with other
systems. It describes a number of transport programs and ProviewR objects used to implement

a variety of different communication protocols and to handle incoming and outgoing messages.
Remote is designed to use different transport protocols such as TCP/IP or BEA Message Queue,
and different hardware media such as ethernet or serial lines.

The main purpose of Remote is to provide the programmer with an interface to communication.

Introduction
There are some different classes and objects that are used to handle the communication.

RemoteConfig

Required to have any remote communication at all. Without this no remotehandler is started.
Place one object in the node-hierarchy.

RemNode

Defines a link of some type to a remote node over a specific protocol.
Several different protocols are supported and there is one specific class for each protocol.
The supported protocols are:

TCP/IP

UDP/IP

RabbitMQ

MQTT

MQ (BEA Message Queue)

ALCM (an old Digital protocol, supported for historical reasons)
Serial

Modbus/RTU Serial

3964R (serial protocol from Siemens)

Webspere MQ

Configuration of each protocol is described further down.
Place RemNode-objects below the RemoteConfig-object.

RemTrans

Generic class that defines a specific message to or from a specific remote node on a

specific protocol. Should be placed below the RemNode-object. The size of a message to be sent
is specified in the RemTrans-object. The data to be sent however resides in a buffer that is
configured as a child to the remtrans-object. When a message is to be sent, data of the length
specified in the remtrans-object is fetched from the buffer. Sometimes however a header of some
length is added to the message.

Buffer

Defining the send- and/or receive data area for each message. Exists in different sizes.
Should be placed below a RemTrans-object. The buffer must be of at least the size of the
message that will be received or sent. If size is not enough message will be cut in the end.

RemTransSend

Function object used in a plc-program for sending messages.

RemTransRcv

Function object used in a plc-program for receiving messages.

Logging of transactions

Remote transactions can be logged to text file. The extent of the logging is configured
in the LoggLevel attribute of the RemTrans object. The log file is configured with a
LoggConfig object.

14.2.2 Protocols

Which protocol to use is defined by the type of Remnode-object you configure. For each configured
Remnode-object a transport job is started. That is, a program to handle the specific protocol is
started as a process. This process will handle all RemTrans-objects that are configured as children
to the Remnode-object.

14.2.2.1 UDP

UDP uses socket communication without connection (datagram), compared to TCP wich is a connected protocol.

14.2.2.2

14.2.2.3

In the RemnodeUDP-object you specify the name and ip-address of the node to communicate with
as well as the port-numbers for both ends. The local port-number needs to be unique on your node
not to conflict with other communications.

As default, all messages are sent with a special header that is not included in the user data buffer.

This header is added at the beginning of the message. The purpose for the header is to give information

about the message that is sent. This helps identifying what type of message that is received and to which buffer
the data will be unpacked. The header looks like:

char Rem dl; /* STX (Hex 02) */
char Rem d2; /* ETB (Hex OF) in data nessage wi thout acknow edge
ENQ (Hex 05) in data nessage w th acknow edge
ACK (Hex 06) in acknow edge nessage */
short int Length; /* Nunber of bytes in message including this header */
short int Messldl; /* Message identity part 1 */
short int Messld2; /* Message identity part 2 */

All of the integers in the header will be sent as big endian values, which means the most significant byte first

in the datagram. The user data is the responsibility of the user to switch, if he wants integers to be sent

with big endian. Intel (x86), VAX and Alpha all use little endian! To send messages without headers, the

attribute DisableHeader should be set to TRUE. When communicating between two ProviewR-systems the header
should be kept on. Messld1 and Messld2 are fetched from attributes RemTrans.Address[0] and RemTrans.Address]|
Through the header it is also possible to request an acknowledge of a sent message. If there is no

acknowledge the message will be resent with a cyclicity specified by the RetransmitTime-attribute in the
remtrans-object.

Since UDP/IP is a connectionless protocol there is a possibility to watch the connection using
keepalive-messages. This is set through the attribute UseKeepalive.

Sending messages

The transport will send a message to the remote port, consisting of header + data.

Messld in the header is taken from RemTrans.Address[0,1], byte-switched to send as big endian.

If MaxBuffers in remtrans-object > 0, the message is sent with type "want acknowledge" and is stored
in the retransmit queue for the remnode. When a corresponding acknowledge message is received, the
message is deleted from the retransmit queue. This is done automatically by the transport process.

Receiving messages

When we receive a buffer, we first check the header to see that this is a correct RemTrans message.

Then we search for RemTrans.Address[0,1] that matches the byte-switched MesslId. If the data object for

this message is big enough to contain the message, the message will be stored, and the

DataValid flag will be set.

If the Remnode is marked to be used without header (DisableHeader-attribute set) then a RemTrans marked as a
receiving remtrans with a enough large buffer will be searched.

TCP

RemnodeTCP is configured much in the same way as RemnodeUDP. The big (only) difference is that TCP is
a connected protocol which acts in client/server fashion. Thus you have to either connect to a

remote socket (act like a client) or await a connection (act like a server). When acting like a server

only one client will be accepted. The ConnectionMode-attribute in the remnode-object defines if you are

a client or a server. Setting it to zero (default) means client and setting it to one means server.

RabbitMQ

RemnodeRabbitMQ configures a transport on the open source broker RabbitMQ.

Exchange, SendQueue and ReceiveQueue are configured in the remnode object. If the queues doesn't
exist they will be created on the server. If Exchange is left empty, the default exchange is used.

Username and password are specified to gain access to the RabbitMQ broker. The user has to
be define on the broker and given appropriate permissions. This can be done with rabbitmqctl on
the server node, eg

> rabbitmgct| add_user nyuser nypasswd
> rabbitnmgct!| set _permissions -p / myuser .* .* %

In the RemTrans object, Address[0] and Address[1] is used to address a sent message to the corresponding
RemTrans in the target node. Address[3] states the message delivery mode where 2 is persistent and other
values not persistent. Address[2] is an option bitmask where bit 1 is KeepAll and bit 2 MsgOrder.

KeepAll means that messages are requeued if the remtrans is occupied. By default they are discarded.
If there are several remtrans objects on the same queue, the order for requeued messages might be changed
unless the MsgOrder bit is set. MsgOrder will set the prefetch count to 1.

If a message should be recovered after a server failure, Durable should be set in the RemoteRabbitMQ
object, and delivery mode in RemTrans.Address[3] should be set to 2 (persistent).

If messages should be able to survive network failures, a suitable method is to send messages to a
local broker and receive messages from a broker on the sending node. In this case you need separate
RemnodeRabbitMQ objects for sending and receiving, and you also need to start the broker in both nodes.

14.2.2.4 MQTT

RemnodeMQTT configures messages with MQTT.
Topics for subscribing and publishing are configured in the remnode object.

Username and password are specified to gain access to the MQTT server. The user has to
be define on the server and given appropriate permissions. For Mosquitto, a password file can be created
with the mosquitto_passwd utility, and the file should be copied to the /etc/mosquitto directory.

In the RemTrans object, Address[0] and Address[1] is used to address a sent message to the corresponding
RemTrans in the target node.

The specification of topics differs if the remote header is disabled or not.
If the header is present

- Sending: publishing is made with the topic in PubishTopic in the RemnodeMQTT.
Address[0] and Address[1] in the RemTrans object is used to match RemTrans objects.

- Receiving: Subscriptions are med with the topic in SubscribeTopic in the RemnodeMQTT object.
The message is directed to the RemTrans with matching Address[0] and Address[1].

If header is disabled
- Sending: publishing is made with the topic in RemTrans.TransName.

- Receiving: A generic topic is set in SubscribeTopic in the RemnodeMQTT object, eg 'lab57/rcv/#'.
A more narrow topic is set in RemTrans.TransName, eg 'lab57/rcv/imsgl'.

14225 MQ

RemnodeMQ is a transport for sending messages on BEA Message Queue (BMQ). It requires that you to have
BEA Message Queue installed on your node. This message queue is good for the safe delivery of messages
to a remote node even if it is not up at the moment you send your message. Vice versa,

messages will safely be delivered to you.

This documentation expects you to have basic knowledge on BEA Message Queue. In basic the communication
runs on a specific bus. Each node has group-number and can only communicate to other groups on the same bus.
On each group several queues can be configured.

To be able to start this transport of course the Message Queue software needs to be running. You also need some
environment variables to be set. These are:

DVQ BUS_| D
DMQ GROUP_I D
DVQ_GROUPNANE

In the RemnodeMQ-object you configure on which BMQ-queue to receive messages in the attribute MyQueue.
You also configure the remote nodes group-number and queue to send to in the attributes TargetGroup and
TargetQueue.

Sending messages

Similarly to UDP and TCP-transports RemTrans. Address[0,1] are used to identify the message. Address[0]
represents the message-class and Address[1] represents the message-type (according to the BMQ-nomenclature).
Address[2,3] are used to define what type of delivery mode (Address[2]) that should be used and what action
should be taken when a message cannot be delivered (Address[3]).

Possible delivery modes are:

PDEL_MODE_WF_SAF 25
PDEL_MODE_WF_DQF 26
PDEL_MODE_WF_NET 27
PDEL_MODE_WF_RCM 28
PDEL_MODE_WF_MEM 29
PDEL_MODE_AK_SAF 30
PDEL_MODE_AK_DQF 31
PDEL_MODE_AK_NET 32
PDEL_MODE_AK_RCM 33
PDEL_MODE_AK_NMEM 34
PDEL_MODE_NN_SAF 35
PDEL_MODE_NN_DQF 36
PDEL_MODE_NN_NET 37
PDEL_MODE_NN_RCM 38
PDEL_MODE_NN_MEM 39
PDEL_MODE_WF_DEQ 40
PDEL_MODE_AK_DEQ 41
PDEL_MODE_WF_CONF 42
PDEL_MODE_AK_CONF 43
PDEL_MODE_WF_ACK 44
PDEL_MODE_AK_ACK 45

and possible actions are:

PDEL_UMA_RTS 1
PDEL_UMA_DLJ 2
PDEL_UMA_DLQ 3
PDEL_UMA_SAF 4
PDEL_UMA_DISC 5
PDEL_UMA_DISCL 6

14.2.2.6

14.2.2.7

14.2.2.8

Not all combinations are possible (see BEA Message Queue documentation for more information).
Recommended combinations are,

for safe delivery of message
Address[2] = 26
Address[3] =4

and for discarding the message if it cannot be delivered
Address[2] = 39
Address[3] =5

If Address[2,3] are both set to zero, a default setting will be used. The default is to discard the
message if it cannot be delivered.

Receiving messages

Address[0,1] are used to identify the message. Address[0] represents the message-class and Address[1]
represents the message-type (according to the BMQ-nomenclature).

Serial

RemoteSerial is an attempt to generalize the use of a simple serial line communication protocols.

Its useful when we have a one-way sending of messages from some equipment to the control system.
You can specify up to eight termination characters in the attribute TermChar[0-7].

These termination characters are used to detect the end of a received message (if a character matches
any of the termination characters).

Specify also the settings for the serial link, that is - DevName , Speed , Parity (O = none, 1 = odd,

2 = even), StopBits and DataBits. These could be for example /dev/ttyS0, 9600, 0, 1, 8.

3964-R

3964R is a simple serial line communication protocol that is developed by Siemens.

You specify the settings for the serial link as with RemnodeSerial, except that there are no stp bits
to specify. You must also specify the character timeout (the maximum time between received characters)
in the attribute CharTimeout. The AckTimeout-attribute specifies the time to wait for an answer.

Messages will be sent straight on without any header. ACK, NAK, DLE and BCC is handled according to
the 3964R protocol.

Receiving messages

There can be only one RemTrans object for receive-messages because of the lack of header
in this protocol. Every received message will be put in the first found RemTrans-object below
the RemNode-object. If the data object for this message is big enough to contain the message,
the message will be stored, and the DataValid flag will be set.

Sending messages

The transport will send a 3964R message to the serial without adding any header.
If we don't have contact with the other node the message will be buffered
if there are still free buffers for this message.

Modbus Serial

The format of MODBUS that is implemented is RTU. For identification of messages we use the fields
known as slave address and function code in the MODBUS header. The RemTrans.Address[0] and [1]
define these fields in the ProviewR environment. Se MODBUS specifications documents for more information.

Modbus Serial is not yet implemented as an 1/0-system in ProviewR. You have to configure the messages
yourself by using RemnodeModbus and specifying RemTrans-object for the various operations you

want to perform. Modbus works in a request/reply manner, so for each operation you want to perform

you specify one RemTrans-object for sending and one for receiving. Except for the Modbus-header of the
message and the checksum handling you have to specify the content of the message to send in the
send-buffer. In the same way you must decode the content of a received message yourself.

Modbus TCP is implemented as an I/O-system in ProviewR. See more information about this in the document
"Guide to I/0-systems". With Modbus TCP you don't have to care about the encoding of the messages.

Receiving messages

When we receive a buffer, we search for RemTrans.Address[0] and [1] that matches the fields

slave address and function code in the message header.

If the data object for this message is big enough to contain the message, the message will be stored,
and the DataValid flag will be set.

Sending messages

Messages will be sent using the contents of RemTrans.Address[0] and [1] as the fields
slave address and function code in the message header.

14.2.2.9 Websphear MQ

RemnodeWMQ is a transport for sending messages on Websphear Message Queue (WMQ). It requires that you
to have Websphear MQ installed on your node.

RemnodeWMQ configures communication through a message queue using Websphere MQ as a client.
All regarding Server, channel, queue manager and queues to connect to is configured
in the RemnodeWMQ-object.

Configurations for the different messages is configured in the RemtTrans-object that define
each in- and outgoing message. For each RemTrans-message the following can be configured:

TransName a string that defines the Msgld (message identity of the message).
Address[0] defines whether the message should be sent as a persistent message or not.
1 means that the message will be sent as a persistent message. 0 not.

14.2.3 An example

To show how to work with the classes that are briefly described above we will start with a little
example. The classes are described in more detail below.

In our example we have one ProviewR-system communicating with an other node via UDP/IP. We will
send a few messages in both directions. My node is named 'dumle’ and the remote node is named
‘asterix'.

The messages we will send are:

d_a RequestData 4 Byte
d_a Report 20 Byte

and the messages we will receive are:

a_d_Data 365 Byte (as an answer to the d_a_RequestData-message)
a_d_Error 10 Byte

The configuration in the node-hierarchy looks like this.

The RemoteConfig-object has to be there. | have added a RemnodeUDP object below this and
configured address and nodename as well as the port-numbers to communicate on.

Edit

PwR Navigator Volume VolMerkl, sysansv on pss30k

Functions

View Qptions Tools

Help

ﬁﬁﬁﬁﬁﬂﬂﬂﬁﬂﬁﬂﬂ

$PlantHier r dumle $Hode B
< MessageHandler MessageHandler
<8 |0Handler IOHandler
<& Backup Backup_Conf
O op OpPace
[0 Maintenance OpPlace
[0 RttConfig RttConfig
OO0 Hc PlcProcess
0 WebHandler WehHandler
O El 3sab_RemoteRack
O E2 3sab_RemoteRack
= Remote Remote Config

= Description

= Prio 15

= DevHame etho

= RemoteHosthame asterix

= RemoteAddress 192.1656.60.22

= LocalPort 7100

= RemotePort 7100

= LinkTimeout 99999.000000

= Disahle 0

= RestartLimit 100

= 3canTime 0.100000

= RetransmitTime 10.000000

= UseKeepalive 1

= KeepaliveTime 1.000000

= DisahleHeader 0
<% WebBrowser WebBrowserConfig
<% StatusServer StatusServerConfig
0 0364 $LibHier

(4]
(4]

4]

Below the RemnodeUDP-object | have added four RemTrans-objects, one for each message. In the
remtrans-objects | have configured the direction (send or receive)and numbered the addresses so | can
distinguish between the messages and set the sizes on the sending messages.

PwR Navigator Volume VolMerkl, sysansv on pss30k

IIIIIII@IIIII

PlicProcess

D WEhHandIer WehHandler
0 El Ssab_RemoteRack
O E2 Ssab_RemoteRack
= Remote RemoteConfig
= asteriz RemnodeUDP
= Description

= TransHame

(B Address

= Address[0] 100

= Address[1] 1

= Address[Z] 0

= Address[3] 0

= Direction 2

= Datalength 4

= LogglLevel 0

= MaxBuffers 0

= Buffers 0

= MaxLlength 0

= Last3is]

= TransTime 01-JAM-1970 01 :00:00.00
= TransCount 0

= BuffCount 0

= LostCount 0

= EmCount 0

= DataValid]

= StructHame RequestData
= StructFile $pwsrp_incira plc userh
0 d_a_Report RemTrans
[0 ad Data RemTrans
0 ad_Eror RemTrans

4]

File Edit Functions WView Options Tools Help
$PlantHier |«
4] [})

Below the remtrans-objects | have put the data-buffers. For the smaller messages | have chosen the
small Buff256-buffer. The Data-message is larger and | have therefore chosen the Buff1440-buffer for

this message.

PwR Navigator Volume VolMerkl, sysansv on pss30k

File Edit Functions

\iew Options Tools

IIIIIII@IIIII

Help

$PlantHier |«

[0 PHc

1 WebHandler
[T

M1 E2

=

PlicProcess
VWebHandler
3sab_RemoteRack
S3sab_RemoteRack

Remote Remote Config
= asteriz RemnodeUDP

= d_a RequestData RemTrans

< Data

= d_a Report
< Data

= ad Data
< Data

= ad Enor
< Data

WebBrowser
StatusServer
[0364

Buffzs6
RemTrans
Buffzs6
RemTrans
Buffi 440
RemTrans
Buffzs6
VWehBrowserConfig
Status ServerConfig
$LibHier

4]

The data structures

The data structures for the messages are defined in the file ra_plc_user.h in $pwrp_inc-directory. This

file is automatically included when you compile the plc-code. The structures look like:

typedef struct {
pw _tuUnt32 Id;
} d_a Request Dat a;

typedef struct {
pw _t Ul nt 32 1 d;

pw _tFloat32 data_1;

pw _tlnt32 data_2;

pw _t | nt32 dat a_3;

pw _tlnt32 data_4;
} d_a Report;

typedef struct {
pw _t Ul nt 32 | d;
pw tFloat32 data_1;

pwr_tlnt32
} a_d_Data;

dat a_xx;

typedef struct {

pw _t Ul nt 32 | d;

pw _tlnt32 func_no;
pw _tlntl6 err_code;
} a_d_Data;

By default the gcc compiler will align elements in data stuctures on 32 or 64-bit boundaries. When
creating data structure for communications, this will cause confusion as different compilers and
platforms have different alignment rules. To avoid this use attribute packed when declaring the
stucture.

typedef struct {
pw _t Ul nt 32 | d;
pw _tlnt32 func_no;
pw _tlntl16 err_code;
} __attribute_ ((__packed)) a d Data;

The plc code

I have a plc program named Comm. In this program | have placed one RemTransSend-object and one
RemTransRcv-object. These objects are found below the "Other"-hierarchy in the plc-editor palette.

To the RemTransSend-object | have connected the RemTrans that | want to send; in this case the
d_a_RequestData-message. The message will be sent when the Dv-signal "RequestData" is set. Similarly
| have connected the a_d_Data-message to the RemTransRcv-object, which will be the answer

to my request.

T PSS-30K-COM-Comm

Fle Edit Search \iew Functions Mode Help

(4]] Analog
1 Control
[Drive
[Edit

[Grafcet
| Data | asteriz-d_a_RequestData |— == = Trs 7 Integer

[Logic

=1 :nd 0
HMps
Rem3eng1] Other
[Signals

| Dv [COM-RequestData l—L
—| ResDv | COM-RequestData [Analoy

Rem3en

(> Digital
_[| <@ DpCollect g [+
(o] D)
| Data | asterix-a_d_Data |-
=
= —{]
&
(] | [+ =

Window saved

Both the RemTransSend and the RemTransRcv-objects have a subwindow. For the RemTransSend this subwindow
will be executed when there is a flank on the snd-pin. When the subwindow has been executed, the
DataValid-attribute of the connected RemTrans-object is set. The transport job for this Remnode

sends the message and sets the DataValid-flag to zero.

For the RemTransRcv the subwindow will be executed when the DataValid-attribute in the connected
RemTrans-object is set. When the transport job for this Remnode receives a message, it fills the
data buffer with the received data and then sets the DataValid-flag.

After execution the flag will be reset.

Send subwindow

In the send subwindow we fill in the data in the send-buffer. The send-buffer for the message to send
is connected to a DataArithm. The special 'structdef'-syntax casts Dal to be a pointer to a
d_a RequestData-struct.

= HRemSendl WINDOW

File Edit Search View Functions Mode Help

Datad D Drive

[Edit E3
Data | d a RequestData-Data [—= = = = = —[I3]

o I .
COM-d |

structdef Dal d_a RequestData;
Dal-=Ild = I1; —

DataA0

Receive subwindow

In the receive subwindow we unpack the data received in the receive-buffer. The receive buffer

is connected to a DataArithm. Again we use the classdef-statement to cast the Dal-pointer.

We unpack the data to the output pins of the DataArithm. If one DataArithm is not enough to unpack
the parameters we just add more DataArithm's and continue in the same way.

RemRcvl WINDOW

File

Edit Search Wiew Functions

Mode Help

Dataf

[pata | a_d_pata-Data |— = = —

Dal

0a1 Stosv | Rev-data_1 |
olf stolv [Rev-1a |
OlZ Stolv | Rov-data 2
013 Stolv | Rov-data_3
ol4 Stolv | Rov-data 4
015 Stolv | Rov-data 5
(o[Stolv | Rov-data_b

structdef Dal a_d Dats;

01 = Dal -=Id;

0Al = Dal-=data 1;
011 = Dal->data_2;

*..04

016 = Dal-=data_o:

Datanl

[J Analog
[J Control
[Drive
[Edit

[Grafcet
[Integer
1 Logic
[J MMps
[Other
7 Signals
[TLoy
[Components

[v]

(4]

(4]

15 Data Storage

There are three different types of data storage in ProviewR, trends, fast curves and historical
data storage. Trends are storing data cyclic during a shorter period of time in the realtime
database. Fast curves are triggered by some event and stores data for a period of time after
the trigg event, and in some cases also before. The historical storage is made on disk in a
relation database and is able to cyclically store data in several years.

15.1 Trends

There are two types of trends

- DsTrend with an internal data buffer that can store about 500 samples with a minimum
scan time of 1 s.

- DsTrendCurve, with configurable buffer size and with a minimum scan time of 20 ms.

15.1.1 DsTrend

The DsTrend object has an internal data buffer of 1912 byte that can for example store
478 samples of type Float32. Also other data types are possible. The configuration is a
bit odd because the buffer is divided into two parts, but normally you just have to state
the attribute that is to be stored in DataName, and possibly insert a value into

Multiple to state the scan time.

See also DsTrend in Object Reference Manual.

15.1.2 DsTrendCurve

File View Help

Time One Minute w-:i_-.-f-i 10:51:04| - |2012-05-16 1 :f-:.4|@8

View Cursar Mark 1 Mark 2 Unit Scale Attribute (~]
O 014 0 0 [] H28-avl.Actualvalue

OO 187 0 0 [] H2s-av2.Actualvalue

16-MAY-2012 10:51:5885 O 0 5 l:l Time axis

57 2012-06-18 1051 58 2012-05-16 105159 2012-05-18 105200 2012-05-16 105201 2012-05-16 1052402 2012-05-18 105203 2012-05-18 105234 2-05-18 10524

Fig Trend configured with DsTrendCurve

The DsTrendCurve object store trends with external buffer objects, where the size of the
Buffer objects limits the number of samples that can be stored. A CricBuffL00k object, as

in the example below, can contain 25000 samples. The storing can be done with scantimes
down to 20 ms. There are also a snapshot function where the current trend is frozen and
displayed in a curve window where it can be analyzed in detail. The snapshot curve can be
stored to files and opened at a later occasion.

The trend is configured with a DsTrendCure object. Up to 10 different attributes that is

to be stored, can specified in the Attribute array. For each attribute, a buffer object of

type CircBuffer is created and stated in the Buffer attribute. The size of the buffer object
should be adapted to the number of samples in the trend. Also a time buffer can be stated,
but this is only necessary if the snapshot function is to be used. The time resolution
determines the size fo the time buffer. For a resolution of 1 s, 4 bytes per sample is

used, and for a resolution of 1 ns 8 bytes is needed.

PwR VolOpg¥, sysansv on opg?
File Edit Functions View Dpticns Tools Help

JJ.-
_.|

Trend2 DsTrendCurve Trend for &vl and Av2
@ Datal CircBuffl00k
& Dataz CircBuffl00k
& Time CircBuff200k
_ . .

Fig Configuration of DsTrendCurve with buffer objects

- PwR VolOpgi/, sysamsv on opg?

File Edit Functions View Options Tools Help

AR E R PN S Y =Y =Y

= Description
= Title

g1 Function
= ScanTime

(B AttributeType
(B Afttribute

= Attribute[0]
= Attribute[l]
Attribute[2]
Attribute[3]
Attribute[4]
Attribute[5]
Attribute[a]
Attribute[7]
Attribute[8]
Attribute[9]
Buffers

Buffers[0]
Buffers[1]
Buffers[2]
Buffers[3]
Buffers[4]
Buffers[5]
Buffers[8]
Buffers[7]
Buffers[g]
Buffers[9]
TimeBuffer

TimeResolution
StorageTime
DisplayTime

PO I® sy pporronn o™ o000 00

Trend2 DsTrendCurve Trend for &vl and Av2

Trend for Al and a2
Trend for Avl and Av2
0

0,020000

H28-41, Actualvalue
H28-42 Actualvalue

H28-Trend2-Datal
H28Trend2-Dataz

H28-Trend2-Time
MNanosecond
S00.000000
20,000000

DisplayResolution 4
DisplayUpdateTime 0.200000

Session saved

Fig Configuration of DsTrendCurve

Snapshot means that you take a copy of the data, and display it in a separate window. You
can configure the trend to show only a limited part of the stored data and that data is

stored for a longer period of time, and also with higher resolution. In the snapshot window

it is then possible to go further back in time or to zoom in and increase the resolution of

the curve.

The attributes DisplayTime and DisplayResolution in the DsTrendCurve object is used to
specify the part of the data that is displayed in the trend window. In the example above
the total storage time is 500 s, while only the last 20 s (DisplayTime) is shown in the

15.2

15.3

trend window. DisplayResolution is set to 4, which states that every forth sample is
displayed. As the scan time is 20 ms a value i shown every 80 ms, and to totally

20 s/0.08 s = 250 samples is viewed. The total data contains 500 s/0.02 s = 25000 samples
that thus are available in the snapshot window.

See also DsTrendCurve in Object Reference Manual.

Fast curves

A Fast curve is triggered by a certain event and then stores data for a certain period of

time than is then displayed in a curve window. The trigger event can be a digital signal

that goes high, an analog value reaching a limit value, or a manual triggering. The fast curve
can be configured to continuously store data so that also data before the trigger point can
be viewed.

A fast curve is configured with a DsFastCurve object. Up to 10 attributes can be handled by
one DsFastCurve object and the attributes are stated in the Attribute array. For each
attribute a buffer object should be created and stated in the Buffers array. Also a buffer
object for the time should be created and stated in the TimeBuffer attribute.

The size of the buffer objects should be adapted to the data quantity that is to be stored.

A fast curve can be viewed in the ordinary curve window, that is opened for example from the
Fast item in the popup menu. It can also be viewed in a Ge graph with a FastCurve component.

See also DsFastCurve in Object Reference Manual.

Historical data storage

Sev is the storage environment, where historical data is stored in a database. It is a
complement to the other environments in ProviewR, the development, runtime and operator
environment. Sev contains server processes that handles fetching and storage of historical
data. Sev can be installed as a separate unit on a storage station, but it is also included

in the runtime package and can be started in the runtime environment.

Read more in Guide to Storage Environment.

16

16.1

Application programming

This chapter is about how to write application programs, i.e. programs in c, c++ or java,
that attaches ProviewR. It is assumed that the reader has basic knowledge in the ¢
programming language.

In many ProviewR applications, coding everything in the plc editor with function object
programming works excellent. However, there are applications that with graphic programming
will be unnecessarily complex, for example advanced models, handling of databases and
material planning. In this case you write an application program in c, c++ or java, that
attaches the realtime database, rtdb. The program reads input data from rtdb, makes its
calculations, and sets outdata to rtdb, where the data is further processed by the plc program,
sent to the 1/0 system and viewed in operator graphs.

We will concentrate on c/c++, as this is the programming language that is most common in

application programming and also has most functionality. The interfaces used are described
in Programmer’s Reference Manual (PRM).

Attach to the database and handle object and data

We start by writing a simple c++ program that attaches to the realtime database and links
to some objects.

The cpp file should be created on the $pwrp_src directory, or subdirectory to this. We create
the directory $pwrp-src/myappl and edit the file ra_myappl.cpp.

Datatypes

In the includefile pwr.h the basic datatypes in ProviewR are defined. The most common is
pwr_tBoolean for digital signals and pwr_tFloat32 for analogous signals, but there are also
c types for all the other ProviewR types, e.g. pwr_tInt32, pwr_tUInt32, pwr_tString80 etc.

Gdh initialization

The database is attached with a call to gdh_Init() which takes an identifier string for the
application as an argument. First we include pwr.h that contains the basic types in ProviewR
and rt_gdh.h that contains the API to the database.

#i ncl ude "pw.h"
#i ncl ude "rt_gdh. h"

int main() {
pw _tStatus sts;

sts = gdh_Init("ra_myappl");

if (EVEN(sts)) {
cout << "gdh_Init failure " << sts << endl;
exit(0);
}
}

The function returns a status variable of type pwr_tStatus. An even status implies that
something is wrong, an odd that the call was a success. The status can be translated to
a string that gives more information about what is wrong. This is achieved with the

errh interface which is described later.

Read and write attribute values

If we want to read or write an object attribute we can use the functions
gdh_SetObjectinfo() and gdh_GetObjectinfo().

A read and write of the Dv H1-H2-Start can look like this. Note that the value of the Dv
is fetched from the attribute ActualValue.

pw _t Bool ean val ue;

sts = gdh_Get Obj ectInfo("Hl-H2-Start. Actual Val ue", &val ue, sizeof(value));
if (ODD(sts)) {

val ue = lval ue;

sts = gdh_Set bj ectInfo("Hl-H2-Start. Actual Val ue", &val ue, sizeof(value));

}

Direct link to attributes

Application programs are often put into an infinite loop, supervising attributes in the
database and reacting to certain changes. In this case you preferably direct link to the
attribute, i.e. get a pointer. This is done by gdh_RefObjectInfo(). In the example below
the program is split in an init() function direct linking to attributes, a scan()

function containing the supervision and control functions, and a close() function removing
the direct links.

class ra_nyappl {
pw t Bool ean *start_ptr;
pw tRefld dlid;

publi c:
ra_myappl () {}
void init();

void scan();
void close();

b

void ra_nyappl::init()
{
sts = gdh_Ref Gbect I nfo("Hl-H2-Start. Actual Val ue", &start_ptr, &dlid,
sizeof (*start_ptr));
if (EVEN(sts)) exit(0);
}

void ra_nyappl ::scan()

{
for (;;) {
if (*start_ptr) {
/1 Do sonething...
cout << "Starting" << endl;
*start_ptr = 0;
}
sl eep(1);
}
}
void ra_nyappl ::cl ose()
{
gdh_Unr ef Gbj ectI nfo(&dlid);
}

In the init() function the pointer start_ptr is set to point to the value of the Dv
H1-H2-Start in the database.

Warning

Note that pointers in ¢ requires caution. If you use pointer arithmetics or array indexes
it is easy to point at the wrong position in the database, and to write in the wrong position.
This can cause errors which are very hard to find the source for.

Direct link to objects

gdh_RefObjectinfo() can, besides direct link to individual attributes, also direct link to
objects and attribute objects.

Suppose that we will set points in a curve and display the curve in a graph. We direct link
to the object H1-H2-Curve of class XyCurve. The includefile pwr_baseclasses.hpp contains a
c++ class, pwr_Class_XyCurve, for the object.

#i ncl ude <nat h. h>

#i ncl ude "pw.h"

#i ncl ude "pw _basecl asses. hpp"
#i ncl ude "rt _gdh. h"

class ra_nyappl {
pw _C ass_XyCurve *curve_ptr;
pw tRefld dlid;

publi c:
ra_myappl () {}
void init();

void scan();
void close();

b

void ra_nyappl::init()

pw _tStatus sts;
pw _t ONane name = "H1l-H2-Curve";

/1 Connect to database
sts = gdh_Init("ra_myappl");
if (EVEN(sts)) exit(0);

/1 Direct link to curve object
sts = gdh_Ref Obj ectInfo(nane, (void **)&curve ptr, &dlid, sizeof(*curve ptr));
if (EVEN(sts)) exit(0);

}

void ra_nyappl ::scan()
{
for (unsigned int i = 0;;i++) {
if (i %5 ==0) {
/1l Calculate x and y coordinates for a sine curve every fifth second
for (int j =0; j < 100; j++) {
curve_ptr->Xvalue[j] =j;
curve_ptr->YValue[j] =50 + 50 * sin(220 * MPI * (j +1i) [/ 100);
}
/1 Indicate new curve to graph
curve_ptr->Update = 1;
}
elseif (i %5 == 2)
curve_ptr->Update = 0;
sl eep(l);
if (i > 360)
i = 0;
}
}

void ra_nyappl ::cl ose()
{
gdh_Unref Gbj ectInfo(dlid);

}

int main()
{
ra_myappl nyappl;

nmyappl .init();

myappl . scan() ;

myappl . cl ose();
}

The program is compiled and linked with

> g++ -g -c¢ ra_nyappl.cpp -o $pwp_obj/ra_nyappl.o -1$pw _inc -DOS_LI NUX=1
- DOS=l i nux - DHW X86=1 - DHWEx86

> g++ -g -0 $pwp_exe/ra_nyappl $pwp_obj/ra _nyappl.o $pw_obj/pw _nsg rt.o
-L$pwr _Iib -lpw_rt -lpw_co -l pw_msg_dumy -Irt

Later we will see how to use make for compiling and linking.

When opening the object graph for the H1-H2-Curve object, we can study the result.

~

= H1-H2-Curve

Description

100.0

0.0

NoOfPoints 100

Fig Object graph for the curve object.

16.2 Console log

Log on the console log

Console log

The console log contains log messages from system processes. If there is something wrong
with the system, you should look in the console log to examine if any process logs error
messages. The error log is a text file on $pwrp_log, pwr_‘nodename'.log, which can also

be opened in rt_xtt from System/SystemMessages. The loggings have five severity levels,
fatal, error, warning, info and success. Fatal and error are colored red, warning colored
yellow, info and success colored green.

Also applications can write on the console log. First you attach to the console log with
errh_Init(), then you kan write messages with different severity with errh_Fatal(),

errh_Error(), errh_Warning(), errh_Info() and errh_Success(),

errh_Init() is called before gdh_Init() and has as arguments a name of the application and
an application index supplied as errh_eAnix_Appll, errh_eAnix_Appl2 etc. Every application
should have a unique application index within the node.

#include "rt_errh. h"

sts = errh_Init("ra_nmyappl", errh_eAnix_Appl1);

To the log functions you send the string that is to be written in the log, e.g.

errh_Error("Something went wrong");

The string can also work as a format statement containing %s to format strings, %f for
float and %d for integer, see printf for more info.

errh_Error("Nunmber is to high: %", n);
The format %m translates a status code to corresponding text

catch (co_error e) {
errh_Error("Error status: %, e.sts());

}

Application status

Every application has a status word in the $Node object. It is found in the attribute
ProcStatus[] in element applicationindex + 20. The status should reflect the condition
of the application and is set by the application itself by the function errh_SetStatus().

errh_Set Status(PWR__ARUN);

PWR__ARUN is defined in rt_pwr_msg.h and linked to the text "Application running".
Other useful status codes are

PWR__APPLSTARTUP "Application starting up” (info)

PWR__APPLRESTART "Application restaring” (info)

PWR__APPLTERM "Application terminated" (fatal)

In the node object there is also a SystemStatus that is a kind of sum of all the status

of the server and application processes. The most severe server or application status
is placed in the systemstatus.

Watchdog

An application that has called errt_Init() is supervised by the system. It should call
aproc_TimeStamp cyclic, or the application status is set to "Process timeout" (fatal).
The timeout for applications is 5 s.

Application object

An application object can be created for the applications. It is placed in the node
hierarchy under the $Node object and is of class Application.

The application object is registered by the function aproc_RegisterObject() that has
the object identity for the object as argument.

pw _tObjid aoid;
pw _t ONane name = "Nodes- MyNode-ra_nyappl ";

sts = gdh_NanmeToObji d(name, &aoid);
if (EVEN(sts)) throw co_error(sts);

sts = aproc_Regi ster Obj ect (aoid);
if (EVEN(sts)) throw co_error(sts);

Status graph

The application is viewed in the status graph for the node if the application has attached
errh and registered the application object. It will be shown under 'Application’ on the row
corresponding to the application index. In the graph the status of the application and the
last/most severe log message are displayed.

T Sy I e A AL B LA [R L R N B L L L LS T
ple D Server running D |0 init: no read or write actions found for this process
rs remaote . D Mo RemoteConfig object found, rs remotehandler will not run
opc server .
rt statussrv] server running B
Application Status Log message
ra_myappl D Application running D | feel fine
= =
B B
= B
H H
H H
| |

Fig Deail for the status graph displaying status an

d log message for the application.

If the process is halted, status is set to timeout. This will also affect the system status.

Fig The application is halted.

Example
In the example we have extended the program with the xy-curve above, and inserted

(a8 ﬁﬁr"g" |_| STIWS Ty |_| L SFSIRT LTI QL U3y Lasc 1Eyuciivy Lol
ple D Server running D |0 init: no read or write actions found for this process
rs remate . D MNo RemoteConfig object found, rs_remotehandler will not run
apc server . .
rt statussry [[] server running B
Application Statusx Log message
ra_myapp! . Process timeout D | feel fine
= =

calls to set application status, log on the console log and register the application

object.
#i ncl ude <mat h. h>
#i ncl ude <i ostreanp
#i ncl ude "pw.h"
#i ncl ude "pw _basecl asses. hpp"
#i ncl ude "rt _gdh. h"
#include "rt_errh. h"
#i nclude "rt_aproc. h"
#i nclude "rt_pw _nsg. h"
#i nclude "co_error.h"
class ra_nyappl {
pw _C ass_XyCurve *curve_ptr;
pw _tRefld dlid;
publi c:
ra_nyappl () {}
void init();
void scan();
void close();
b

void ra_nyappl::init()

{
pw _t Status sts;
pw _t ONanme name = "Hl- H2- Curve"
pw _tObjid aoid;

/1 Init errh with anix 1
sts = errh_lnit("ra_nyappl", errh_eAnix_appl1);
if (EVEN(sts)) throw co_error(sts);

/1 Wite nmessage to consol el og and set application status
errh_Info("I feel fine");
errh_Set Status(PWR__APPLSTARTUP)

/1 Connect to database
sts = gdh_Init("ra_myappl");
if (EVEN(sts)) throw co_error(sts);

/1 Register application object

sts = gdh_NanmeToObj i d("Nodes-Saturnus7-ra_nyappl"”, &aoid);
if (EVEN(sts)) throw co_error(sts);

apr oc_Regi st er Obj ect (aoi d);

/] Directlink to curve object
sts = gdh_Ref Obj ectInfo(nane, (void **)&curve ptr, &dlid, sizeof(*curve ptr));
if (EVEN(sts)) throw co_error(sts);

errh_Set Status(PWR__ARUN);
}

void ra_nyappl ::scan()

for (unsigned int i = 0;;i++) {
/1 Notify that we are still alive
aproc_Ti meSt anmp() ;

if (i %5 ==0) {
for (int j =0; j <100; j++) {
curve_ptr->Xvalue[j] =j;
curve_ptr->YValue[j] =50 + 50 * sin(20 * MPI * (j +1i) [/ 100);
}
curve_ptr->Update = 1;
}
elseif (i %5 == 2)
curve_ptr->Update = 0;

sl eep(1);
if (i > 360)
i =0
}
}
void ra_nyappl ::cl ose()
{
gdh_Unr ef Gbj ectInfo(dlid);
}
int main()
{
ra_myappl nyappl;
try {
myappl .init();
}
catch (co_error e) {
errh_Fatal ("ra_nyappl termnated, %1, e.sts());
errh_Set Status(PWR__APPLTERM ;
exit(0);
}
myappl . scan();
nmyappl . cl ose();
}

16.3 Start the application

An application that is to be started at ProviewR runtime startup is inserted into the
application file. This resides on $pwrp_load and is named Id_appl_'nodename’_'gbus'.txt,

e.g.
$pwr p_I oad/ | d_appl _mynode_999. t xt

In the file you insert one line for each application that is to be started

#id nane [no]load [no]run file prio [no]debug "arg"
ra_myappl, ra_nyappl, noload, run, ra_myappl, 12, nodebug,

16.4 Receive system events

ProviewR transmits messages at certain events, e.g. when a soft restart proceeds or when

the runtime environment is stopped. An application can listen to these messages, for

example to terminate when ProviewR is terminated. The messages are received from Qcom. You
create a Qcom queue and bind this queue to the queue that submits the messages.

#i nclude "rt_qcom h"
#include "rt_ini _event.h"
#i nclude "rt_qcom nsg. h"

gqgcomsQ d gid = qcom cNQ d;
gqgcomsQ@d qgini;
qcomsQattr qAttr;

if ('gcomlnit(&sts, 0, "ra_myappl")) {
throw co_error(sts);

/]l Create a queue to receive stop and restart events

gAttr.type = qcom eQype_private;

gAttr.quota = 100;

if ('gcom CreateQ&sts, &qid, &jAttr, "events"))
throw co_error(sts);

/]l Bind to init event queue

gini = gcomcQni;

if ('qcomBind(&sts, qid, &gini))
throw co_error(sts);

In each scan you read the queue with gcom_Get() to see if any messages have arrived. You
can also use the timeout in gcom_Get() to wait to next scan. In the example below, the
terminate event is handled, but also the oldPIlcStop and swapDone events that indicates

the start and end of a soft restart. You only have to do this if you want the application

to discover new objects of new configurations after a soft restart.

int tmo = 1000;
char np[2000];
gqcom sCet get;
int swap = O;

for (55) {
get. maxSi ze = si zeof (nmp);
get.data = np;
gcom Get (&sts, &gid, &get, tno);
if (sts == QCOM_TMO || sts == QCOM__CEMPTY) {
if (!swap)
/1 Do the normal thing
scan();

}

el se {
/'l 1ni event received
ini _mEvent new event;
gcom sEvent *ep = (qcom sEvent*) get. dat a;

new _event. m = ep->nask;

if (new_ event.b.oldPlcStop && !swap) {
errh_Set Status(PWR__APPLRESTART) ;
swap = 1;
cl ose();

} else if (new_ event.b.swapDone && swap) {
swap = 0;
open();
errh_Set Status(PWR_ARUN);

} else if (new event.b.termnate) {
exit(0);

}

}
}

If you only are interested in stopping the process when ProviewR is taken down, there is
a more simple way to Kill it. You can put a scripfile, pwrp_stop.sh, on $pwrp_exe where
you kill the process.

killall ra_myappl

16.5 Baseclass for applications rt_appl

The baseclass rt_appl contains many of the initializations and supervision of events
described above. By subclassing rt_appl you don't have to supply any code for this, it
is done by rt_appl. rt_appl contains three virtual functions that are to be implemented
by the subclass, open(), close() and scan(). open() is used at initialization to direct
link to attributes anad object, scan() is called cyclic with supplied cycletime, and in
close() you remove the direct links.

rt_appl handles this:

- Initialization of gdh, errh and gcom

- Setting of application status at startup and restart
- Handling events for soft restart and termination

- Timestamps to avoid timeout

This example shows the application ra_appl subclassing rt_appl.

class ra_appl : public rt_appl {

publi c:

ra_appl () : rt_appl("ra_appl", errh_eAnix_appll) {}
voi d open();

void cl ose();
void scan();

b

voi d ra_appl ::open()

{
/1 Link to database objects
}
void ra_appl::close()
{
/1 Unlink to database objects
}
void ra_appl::scan()
{
/1 Do sonething
}
int main()
{
ra_appl appl;
appl .init();

appl . regi ster_appl ("Nodes- MyNode- MyAppl ") ;

appl . mai nl oop() ;

}

16.6 Send alarms and messages

From an application you can send alarms and messages to the alarmlist and eventlist of
the operator. First you have to connect to the event monitor with mh_ApplConnect() which
takes the object identity for the application object as first argument. For subclasses to

the rt_appl class this identity is fetched with apploid().

#i nclude "rt_nmh_appl . h"

pw _tU nt32 num

pw _tQ d aoid = apploid();

sts = nmh_Appl Connect (aoid, mh_mAppl Fl ags(0), "", nh_eEvent Info, nmh_eEventPrio_A,
mh_nEvent Fl ags Bel |, "", &um;
if (EVEN(sts)) throw co_error(sts);

We then can send alarms with mh_AppIMessage().

mh_sAppl Message nsg;
pw _t U nt32 nsgid;

menset (&rsg, 0, sizeof(nsQ));

nmeg. Event Fl ags = nh_nEvent Fl ags(mh_nEvent Fl ags_Ret urned |
mh_nEvent Fl ags_NoObj ect |
mh_nEvent Fl ags_Bel |) ;

time_GCetTime(&rsg. EventTine);

strcpy(nmsg. Event Name, "Message fromra_mnyappl");
strcpy(msg. EventText, "I'mup and running now !");
nsg. Event Type = nh_eEvent _Alarm

nmsg. EventPrio = mh_eEvent Pri o_B;

sts = nh_Appl Message(&nmsgid, &mrsQ);
if (EVEN(sts)) throw co_error(sts);

) Alarm List [=][2])(x]

File Functions View Help
OB % 09-01-16 07:42:04 I'm up and running now ! Message from ra_myappl [~

Fig The alarm in the alarmlist.

16.7 Communicate with other processes

ProviewR's protocol for communication between processes can be used also by applications.
The communication can be

- between processes in the same node

- between processes in different nodes that belong to the same project

- between processes in hodes that belong different projects, if the project has the same
Qcom bus. In this case the nodes have to be configured by FriendNodeConfig objects where
Connection is set to QcomOnly.

Read more about Qcom in Qcom Reference Guide.

16.8 Fetch data from a storage station

Data stored in a ProviewR storage station can be fetched by the client interface sevcli.
First you initiate sevcli with sevcli_init() and state which storage station you want to
fetch the data from with sevcli_set_servernode().

sevcli _tCtx sevctx;
char server_node[40] = "MyStorageStation";

if (!sevcli_init(&sts, &sevctx))
throw co_error(sts);

if (!sevcli_set _servernode(&sts, sevctx, server_node))
throw co_error(sts);

Then you can fetch data with sevcli_get_itemdata(). Data is identified by object identity and
attribute name. You also state the time range for the data that is to be fetched and
maximum number of points.

pw _tTine *tinme_buf;

16.9

voi d *val ue_buf;

pw _tTine from= pw _cNTi ne;

pw tTinme to = pw _cNTi ne;

int rows;

pw _eType vtype;

unsi gned int vsize;

pw _t ONane name = "Hl- H2- Tenperature";
pw _t ONanme ananme = "Actual Val ue";
pw tQojid oid;

char timstr[40];

sts = gdh_NameToObjid(name, &oid);
if (EVEN(sts)) throw co_error(sts);

if (!sevcli_get_itendata(&sts, sevctx, oid, aname, from to, 1000, &tine_buf, &val u
& ows, &vtype, &vsize))
throw co_error(sts);

for (int i =0; i <rows; i++) {
time_AtoAscii(&ime_buf[i], time_eFormat_DateAndTime, timstr, sizeof(tinmstr));

cout << timstr << " " << ((pw_tFloat32 *)value buf)[i] << endl;

}

free(tinme_buf);
free(val ue_buf);

Finally you call sevcli_close() to disconnect the server node.

sevcli_close(&sts, sevctx);

I/0 handling

If an application requires fast and synchronized I/O data it can work directly against the
1/0 system and call the 1/O routines to read and write 1/O on its own.

Initialization is done with the function io_init(), to which a process argument is supplied.
Process identifies which 1/0O units (agent, rack or card) are handled by a specific process.
Each 1/O object has a Process attribute and if this corresponds to the process sent as
argument to io_init(), the unit will be handled by the application. If a card is handled

by an application, also the rack and agent of the card have to be handled by the application.

As the Process attribute is a bitmask, a unit can be handled by several processes by
setting several bits in the mask. If you, for example, have several cards in a rack, and some
of the cards should be handled by the plc-process and some by an application, the rack unit
has to be handled by both the plc and the application. Whether it works, to handle a

unit from several processes, depends on how the 1/0 methods for the unit are written.

For example for Profibus, you can't divide the handling of slaves into different

processes.

#include rt _io_base.h

io tCtx io_ctx;

sts = io_init(io_nProcess User, pw_ cNOd, & o _ctx, 0, scantine);
if (EVEN(sts)) {

errh_Error("lo init error: %, sts);

throw co_error(sts);

}

Reading is executed with io_read() which reads data from the 1/O units and places

the data in the signals connected to the unit. The application preferably links directly

to these signals, and also to the signals of the output units. The output units are written
to with the function io_write().

sts = io_ read(io_ctx);

iowite(io_ctx);

sts

16.10 Thread safe strings and times

Times and string attributes in the realtime database can not be accessed in an atomic
operation and thus needs special consideration when handled in two different threads or
processes. The problem is that when one thread is writing a time or string attribute, another
thread can read the attribute before the write is finished, and thus read a value that

contains parts of both the previous and the new value. To avoid this the read and write
operations should be protected by a lock. There are two locks, one for time attributes and one
for string attributes.

Time lock

The time lock is used for attributes of type pwr_tTime and pwr_tDeltaTime. When a time

attribute is read or written, the lock should be set. The following plc function objects will

use the lock to protect the reading or writing of the time value.

StoATv, StoDTv, CStoATv, CStoDTv, StoDTp, StoATp, CStoDTp, CStoATp, GetATp, GetDTp, GetATy,
GetDTv, CurrentTime.

Note that other time objects are not protected by the lock. It's not safe to use the output
from for example a AtAdd in another Plc thread or an application program. In this case the
time should first be stored in an ATv object.

To read and write times, applications should use these gdh functions

void gdh_GetTimeDL(pw _tTinme *atp, pw _tTime *tine);

void gdh_Set TimeDL(pw _tTime *atp, pw _tTime *tine);

void gdh_GetDeltaTi neDL(pw _tDeltaTine *dtp, pw _tDeltaTine *tine);

voi d gdh_Set Del taTi meDL(pw _tDeltaTine *dtp, pw _tDeltaTine *time);

pw _t Status gdh_Get Obj ectInfoTi me(char *nanme, pw _tTine *tinme);

pw _t Status gdh_Set Obj ect I nfoTi me(char *nanme, pw _tTine *tinme);

pw _tStatus gdh_Get Obj ect|nfoDeltaTi me(char *nane, pw tDeltaTine *tine);
pw _tStatus gdh_Set Obj ectInfoDeltaTi me(char *nane, pw tDeltaTine *tine);

Before using any of these functions, the time lock has to be initialized by the application
with a call to Ick_Create(), eg
| ck_Create(&sts, |ck _elLock Tine);

String lock

The string lock is used for string attributes. The following plc function objects will use
the lock. StoSv, CStoSv, StoSp, CStoSp, StoNumSp, CStoNumSp, GetSp, GetSv.

Other string objects are not protected by the lock and the string values in these objects
should not be read or written in other Plc threads or in application programs.

To read and write string, applications should use these gdh functions

void gdh_Get StrDL(char *sp, char *str, int size);
void gdh_Set StrDL(char *sp, char *str, int size);
pw _tStatus gdh_Get bj ectInfoStr(char *name, char *str, int size);
pw tStatus gdh_Set bj ectInfoStr(char *nanme, char *str, int size);

Before using any of these functions, the string lock has to be initialized by the application
with a call to Ick_Create(), eg
| ck _Create(&sts, |Ick eLock Str);

16.11 Build an application

A c++ application has to be compiled and linked, and you can use make to do this. ProviewR
contains a rule file, $pwr_exe/pwrp_rules.mk, that contains rules for compilation.

A makefile for the application ra_myappl on the directory $pwrp_src/myappl can look
like this ($pwrp_src/myappl/makefile):

ra_mnyappl _top : ra_nyappl
i ncl ude $(pw _exe)/ pw p_rul es. nk

ra_myappl _nodules : \
$(pwp_obj)/ra_nyappl.o \
$(pw p_exe)/ra_nyappl

ra_myappl : ra_nyappl nodul es
@echo "ra_myappl built”

#
Modul es
#

$(pwp_obj)/ra_nyappl.o : $(pw p_src)/ myappl/ra_nyappl.cpp \
$(pw p_src)/ nyappl/ra_myappl . h

$(pw p_exe)/ra_nyappl : $(pw p_obj)/ra_mnyappl.o

@echo "Link $(tnane)"

@3$(1dxx) $(linkflags) -o $(target) $(source) -lpw rt -lpw _co \
-l pwr_nsg_dunmmy -lrpcsvc -Ipthread -Im-1Irt

The makefile is executed by positioning on the directory and writing make

16.12

make

You can also insert the build command into the Application object for the application
in the attribute BuildCmd. In this case the build command is

make --directory $pw p_src/nyappl -f makefile

This command is executed when the node is built from the configurator. This is a
way to ensure that all applications are updated when the node is built.

Java applications

Some API also exist for java in the shape of the classes Gdh, Errh and Qcom. Below is
an example of a java application attaching the realtime database and reading and writing
an attribute.

import jpw.rt.*;

public class MyJappl {

public MyJappl () {
Gdh gdh = new Gdh(null);

Cdhr Bool ean rb = gdh. get Obj ect | nf oBool ean("H1-H2-Start. Actual Val ue");

PwtStatus rsts = gdh. set Obj ectInfo("Hl-Hl-Start. Actual Val ue",
I'rb.val ue);

}

/! Mai n et hod
public static void main(String[] args) {
new MyJappl () ;
}
}

To compile and execute you have to put $pwr_lib/pwr_rt.jar and the working directory into
CLASSPATH, and $pwr_exe into LD_LIBRARY_PATH

> export CLASSPATH=$pwr _|ib/pw _rt.jar:$pw p_src/nyjappl
> export LD LI BRARY_PATH=$pwr _exe

Compile with
> javac MyJappl .java

and execute with
> java MyJappl

For auto start of the application you create a shellscript that exports CLASSPATH and
LD_LIBRARY_PATH, and starts the java application. The script is inserted into the appl-file
in the same way as a c application.

17

Creating Process Graphics

This chapter describes how you create process graphics.

Process graphics are drawn and configured in the Ge editor.

The Ge editor

Ge is opened from the menu in the navigator: 'Functions/Open Ge'. It consist of

- atool panel

- awork area

- a subgraph palette

- a color palette

- a window displaying the plant hierarchy
- a navigation window

Background picture

A background image is drawn with base objects such as rectangles, circles, lines, polylines
and text. These are found in the tool panel. Create a base object by activating the pushbutton
in the tool panel and dragging or clicking MB1 in the work area. If the base object should be
filled, select the object and activate fill in the tool panel. Change the fillcolor by

selecting the object and click on the desired color in the color palette. Change the border
color by clicking with MB2 in the color palette, and the text color by clicking Shift/Click MB1.

Subgraphs

A subgraph is a graphic component, e.g. a valve, a motor, a pushbutton. To create a subgraph,
select a subgraph in the subgraph palette and click MB2 in the work area.

Groups

Base objects and subgraphs can be grouped together by selecting them and activating
'Functions/Group' in the menu.

Dynamics

Subgraphs and groups have dynamic properties, i.e. they can be connected to signals in the
runtime database, and change color, position or shape depending on the values of the signals.
A subgraph often has default dynamic behavior, for example an indicator shifts between two
colors. You only have to connect the indicator to a digital signal to make it work. This is

done by selecting a signal in the plant hierarchy window, and click on the valve with
Ctrl/DoubleClick MB1.

A pushbutton has an action property; it sets, resets or toggles a signal in the database.

A button with a set action is created by selecting a ButtonSet in the subgraph palette and
clicking MB2 in the work area. The signal that should be set is connected as above, by selecting
the signal and clicking with Ctrl/DoubleClick MB1 on the button. In the object editor, a button
text can be assigned.

Connect a subgraph to a signal

0 Palt G e =0 x|
File Edt Functions Wiew Halp
= @E%j i JERY L mfunmmhl 2| Linetype 1 :|Tuct:mek :hﬂuld Gridsiee 0.5 N|1-’§}b 4% b 1|€2r
=] e e e N S L R e B e B DS R
[0 TrafficOmoss1 §PantHier -
0 ub $Litier
B oA S PantHinr
= HY $Maniiier
B A $PiantHior
& VaheOpenSW Di
= i ValveError Oy
Service mode

|
(R TR
WEE) g
IR AROORRE RN
MIEE ARG RO
AT IMAIE TR
- -l
[+]
Al o
SetDig Attriute = F1-HY-F] Start.Actual/alue# #8aolean 16,30, 3.00

Groups also have a dynamic property, i.e. they can shift color, move, or perform some action.
They don't have any default action or default color, as the subgraphs. You have to assign this
for each group.

The Object editor

Base objects, subgraph objects and groups have properties, that are changed from the object
editor. The object editor is opened by selecting the object, and activating

'Function/Object attributes' in the menu. By opening the object editor for the pushbutton
mentioned above, you can for example enter the text that is displayed in the button in the
attribute 'Text'.

If a subgraph has more advanced dynamics, for example shift between several colors, you often
have to connect it to several signals. If you open the object editor for a valve, you see that

it can be connected to two attributes, 'DigError.Attribute’ and 'DigLowColor.Attribute'.

The DigError attribute indicates that something is wrong, and if this signal is true, the

valve is colored red. The DigLowColor attribute is connected to the open switch of the valve.
If this signal is false, the valve is colored in the color stated in '‘DigLowColor.Color'. If

the signal is true, it keeps the color given in the editor. The signals of the two attributes are
inserted by selecting each signal in the plant hierarchy respectively, and clicking with
Ctrl/Doubleclick MB1 on the attribute row of the attribute. The color 'DigLowColor" is stated
by opening the attribute and selecting one of the 300 colors. The colors have the same order
as in the color palette, and with a little practice they can be identified by the name.

The Object Editor for a valve

%1 Object Attributes =10l x|
File Functions Help

CE SubGraph pwr_valve -]
= DigError.Attribute

= DigLow Color.Attribute

CE DigLowColor.Color Inherit

CE Cycle Inherit

CE DynType Inherit

(B Action Inherit

Kl J |

Graph borders

The drawing area in Ge is unlimited in every direction, so before saving the graph, you have
to state the borders of the graph. Open the graph attributes with 'File/Graph’ attributes in

the menu. Measure the coordinates of the upper right corner, and insert as x0 and yO0, then
measure the coordinates of the lower left corner and insert as x1 and y1. The measurement is
done by placing the cursor in position and reading the coordinates in the the message row.

Graph Attributes

{1 Object Attributes - 10| x|
File Functions Help
subgraph] =
»=0 Z.000000
¥0 -0.500000
#1 Z6.000000
¥l 16.500000
Scantime 0.500000

Fast3cantime 0.500000
AnimationScantime 0.500000

JavaWidth 1]
IsJavafpplet]
IsJavaFrame 1]

Backgroundlmage
BackgroundTiled 0
Double Buffered 1]
MB3Action Close
Translate 1]

I0 00000000 nonotonid

[«]

Configuration in the workbench

The XttGraph object

To each plant graphics an XttGraph object is belonging. This object is usually a child of the
operator place object (OpPlace) for the node, on which the graphics will be displayed. It is
necessary to create an XttGraph object for each node, on which the graphics will be displayed.
However, you only need to have one graph file. The following attributes in the graph object
must be set to appropriate values:

- Action, the name of the pwg file with file type, e.g 'hydr.pwg'
- Title, the title of the graph window
- ButtonText, text of the button in the operator window

The XttGraph object contains other attributes which e.g. helps you to customize the position
and size of plant graphics. These attributes are described in detail in ProviewR Objects
Reference Manual.

See XttGraph in Object Reference Manual

18

Web operator environment

Besides the ordinary operator environment in X windows, ProviewR also contains an operator
environment written in HTML5 and javascript. The environment is runnable in most webbrowsers on
phones, tablets and PCs.

The interface consists of three parts

- an operator window opened in the web browser.

- a server process that serves the operator window with information via a web socket.
- a directory where files are available for the web.

Operator window

The operator window displays a menu to the left and a start page to the right.

|' @ 127.0.0.1/pwrp_webfindc x | +

€ 2> C @ 127.0.0.Vpwrp_web/index.html A* e B

Login

Default on 127.0.0.1

AlarmList

EventList

EventLog

Mavigator

Help

ProviewR

Overview

Classes

ProviewR

OPEN SOURCE PROCESS CONTROL

Welcome to pwrtest03

Description

Edit file Spwrp_cnf/xtt_help.dat to write this description.

Fig Web operator window

The operator window is configured with an OpPlaceWeb object in the node hierarchy.

The menu is divided in three sections. The first contains a number of standard functions
- language selection.

- login and logout.

- open alarm and event list.

- open event log.

- open runtime navigator.

- link to project help texts.
- link to ProviewR documentation.

These buttons can be enabled or disabled with the Enable/Disable attributes in the
OpPlaceWeb object.

The second section contains buttons to open graphs configured with WebGraph objects. The
WebGraph objects is placed as children to the OpPlaceWeb object and contains the name of
the Ge graph pwg-file.

The third section contains links defined with WebLink objects. The WebLink objects contains
an URL and is positions below the OpPlaceWeb object.

The right page will by default contain the help text for the project, written in the file
$pwrp_cnf/xtt_help.dat. If another page is prefered, this can be stated in the StartURL
attribute.

There can be serveral OpPlaceWeb objects in one node, configuring web pages with different
settings. The OpPlaceWeb objects should have different flenames stated in the FileName
attribute, and can be opened with an URL to the specified file. The default file is index.html
for the first OpPlaceWeb object, and index2.html, index3.html etc, for the preceeding
OpPlaceWeb objects.

The opplace with the FileName index.html can be opened with the URL

http://' hostnane' /pw p_web/index. ht m

F A

*** PwR VolPwrtest03a, pwrponpwrtest03 X

File Edit Functions View Options Tools Help

O Test03a) Modes tModeHier
= Pwrtest03a tMode
& Security $Security
[=r OpPlaces sModeHier
<5 Op OpPlace
OpWeb OpPlaceWeb
LT Overview WebGraph
= » ObjectMame Overview
= p MName OVETVIEW. pWO
= p Text Overview
b WebTarget RightFrame
El» ConfigurationStatus None
5 Classes WebLink
= » ObjectMame Classes
= p URL cvolpwrtest03_allclasses. html
= p Text Classes
b WebTarget RightFrame
— S

Fig Web operator configuration

Server process

The server process is configured with a WebSocketServer object in the node hierarchy. The
server is a java process and requires that java is installed. The server listens for

requests from operator windows to open a web socket, and supplies information about the
realtime database to the operator window.

Alarm and event list

The alarm and event list requires that the EventSelectList in the WebSocketServer object is
filled in with hierarchies from which alarms and events should be displayed.

Web directory

The operator window requires a number of files, and these are gathered on the web directory,
pwrp_web. This directory is exposed by the web server and available from the web.

Here are some files that should be present on the directory

- pwg files for Ge graphs, used in WebGraph objects. Should be copied from $pwrp_pop.
- pwg files for object graphs, can be copied from $pwr_exe.

- flw files for plc trace, shoud be copied from $pwrp_load.

- crossreference files, rtt_crr*.dat should be copied from $pwrp_load.

- xtt help text html files. These are generated when the node is built.

- documentation of local classes are generated when the class volume is built.

- All files on $pwr_web are copied to $pwrp_web at installation of the pwrrt package.

Some files are generated or copied at installation, but some have to be copied manually or
preferably automatically by creating Build objects in the directory volume.
In the example below there are BuildCopy objects configured to copy

- pwg files from $pwrp_pop.
- flw files from $pwrp_load.
- crossreference files from $pwrp_load.

PwR Directory, pwrp on pwrtest03 X

File Edit Functions View Options Tools Help

2@ HEHB 04 %RKKR

5 VolPwrtest03a RootVolumeCor 5 System HSystemn
L2 CVolPwrtest03 ClassVolumeCc i BuildConfig
= pop BuildDirectory
LEE pwg_exe_web BuildCopy
= Source * pwg
= Target spwrp_exel Spwrp_web/
5 pwsg_exe BuildCopy
5 png_exe BuildCopy
i appl BuildDirectory
= load BuildDirectory
@i flw_web BuildCopy
= Source * flw
= Target spwrp_web
5§ crr_web BuildCopy
= Source rtt_crr*.dat
= Target Spwrp_web
O Prdg99 BusConfig
A ————— S

Fig Directory pwrp_web build configuration

Help texts

The help texts for the project in the file xtt_help.dat, is exported to html files on

$pwrp_web by the build method of the OpPlaceWeb object. The start page for the help texts are
$pwrp_web/xtt_help_index.html. This is showed as default in the right frame of the home page
if no other URL is stated in the StartURL attribute of the OpPlaceWeb.

If the helptext contains image tags, the png or gif files have to be copied to $pwrp_web.

Distribution

The files on $pwrp_web should be part of the distribution package, and distributed to
$pwrp_web on the process or operator station. This is done by setting WebFiles in the
Distribution object under the NodeConfig object in the directory volume.

Web server configuration

The pwrp_web directory has to be avaiable from the web, and inserted in the web server
configuration. For nginx and apache this is done at installation of the pwrrt package, but

if you want to view a project on a development station this has to be done manually. Hhere are
some examples.

nginx
Add these lines in /etc/nginx/sites-enabled/default (replace /pwrp/common/web/ with
the real location of $pwrp_web)

| ocation /pwp_web/ {
al i as /pw p/ common/ web/ ;

}

apache
Add these lines in /etc/apache2/apache?2.conf (replace /pwrp/common/web/ with
the real location of $pwrp_web)

Alias /pw p_web/ /pw p/comron/web/

<Di rectory /pw p/ cormon/ web>
Al l onwOverri de None
Require all granted
</Directory>

Security

If the login frame is enabled, a user can login with a valid username and password, and gain
the privileges granted for the logged in user. Valid users are members or the system group
specified in WebSystemGroup in the Security object.

In the example below, the system group ‘Common' is used that contains the ordinary users
pwrp, system etc, but you are recommended to create a specific system group with special
users for the web.

For not logged in users, the privileges are determined by DefaultWebPriv in the Security
object. It is recommended that DefaultWebPriv is RtRead or zero (no privileges). Users that
have no privileges can only open the login frame.

"

PwR VolPwrtest03a, pwrp on pwrtest03

File Edit Functions View Options Tools Help

44N dESB D4 ERRK

| Test03a $PlantHier = Modes SMNodeHier
= Pwrtest03a SNode

[DefaultWebPriv 1

= RtRead]
= RtWrite 1
B3 DefaultXttPriv 4

= XttlseOpsysUser 0
= WebSysternGroup Common

Fig Security configuration

]

19

19.1

Starting and testing a ProviewR system

In preceding chapters we have described how to configure a ProviewR system, how to create
PLC programs and how to create plant graphics. Now it is time to run and test the system.

This chapter shows how to:

- build the system.

- start the simulate environment
and the runtime monitor

- distribute

- start the runtime environment

Syntax check

Some classes have a syntax check method, checking that the object is correctly configured.

The methods of the signals objects check for example that they are connected to a channel, and
the method for a PlIcPgm checks that it is connected to a plc thread object etc. The syntax methods
captures a great deal of errors, but does not guarantee that everything will work faultlessly.

The syntax methods are executed from 'Functions/Syntax Check' in the Configurator menu.

Build

Before you have a running system for a node, you have to build the node. It means that you
generates what you need in the runtime environment, e.g. a boot file specifying which volumes
are to be loaded, loadfiles for the volumes containing info about the objects in the volume,

an executable for the plc program etc.

You build by activating 'Functions/Build Node' in the Configurator menu, or the corresponding

button in the tools panel. If there are several nodes configured in the project, you also
have to select a node from the viewed list of nodes.

unudnode T

opcrossl

newton

L]

Ok ‘ Cancel ‘

Fig Node selection

19.2

Also the build is divided into methods for different classes. The build method for a PlcPgm
generate code for the modified windows and compiles this code. The build method for a
volume creates a loadfile for the volume, and calls the build mehtods for all objects

in the volume. The build method for a node calls the build method for the volume, creates
a bootfile for the node, and to link the plc executable. The build methods for an object can
be called by selecting the object and activating 'Functions/Build Object' in the menu, and
the build method for the current volume by activating 'Functions/Build Volume'.

Below follows a description of some build methods.

XttGraph Copies the pwg file for the graph from $pwrp_pop to $pwrp_exe.

WebGraph Copies the pwg file from $pwrp_pop to $pwrp_web.

OpPlaceWeb Generates html-files for the homepage of the node, and converts xtt helpfiles
to web format.

PlcPgm Generates c-code that is compiled by the ¢ compiler.

RootVolume Calls the build method for all objects in the volume, and creates a load file

with info about the objects in the volume. Also creates crossreference files
if specified in Options.

ClassVolume Generates include files with c structs for the classes of the volume, and
creates a loadfile with the type and class definitions.
Node Calls the build method for the rootvolume, if the volume is available. Creates

a bootfile with info about which volumes are to be loaded, and links the
plc program of the node.

Normally the build method first checks if anything is modified, and only performs the build
if it finds a modification. In some cases you want to force a build, and then set 'Force' in
the Build column in options opened from 'Options/Settings' in the menu. It is also possible
to mark that you want to create crossreference files ag build, or that compile and link of
the plc should be performed with debug.

If a node contains subvolumes or shared volumes, these have to be built by 'Build VVolume'
before building the node.

Simulate

Simulate means starting the system for a process or operator station on the development
station. This is a fast way to test programs and process graphics during the development
phase. Also when a system is in production, you can test modifications of the system before
downloading them to the production system.

When simulating, the input data from the process has to be simulated. This is done by creating
a PlcPgm that reads output data to the process, i.e. Do an Ao values, and from these set
values to Ai and Di objects. There are special StoDi and StoAi objects for this purpose, only
used at simulation. You have to assure that simulate program only executes at simulation, e.g.
by setting the ScanOff attribute of the PlcWindow object if I0OSimulflag in the IOHandler
objectis 1.

To be able to simulate on the development station, it has to be configured in the directory
volume. The simulation is performed on a separate QCom bus, which is configured by a
BusConfig object on the top level in the right window of the directory volume. In this you

state the bus identity, e.g. 999. Below the BusConfig object you place a NodeConfig object

for the development station, and fill in the node name and IP address. You can use the
loopback address 127.0.0.1 as long as you don't plan to communicate to other nodes. You also
have to specify which volume you want to simulate by setting the name of the RootVolumeLoad
object below the NodeConfig object, to the name of the volume.

Note that the configuration guide for the directory volume normally creates a simulate bus
and a simulate node.

PwR Directory, eric on trafficcrossl

File Edit Functions View Options Tools Help

| 2| | w|#|o|8|n| a|=|a|x s

< VolOpTrafficCrossl RootVolumeCor =] | (0 Prd Production communication bus | =]
% VolTrafficCrossl RootVelumeConfig 5im999 -
newton
@ VolTrafficCrossl RootVolumeload
| @ Distribute Distribute
1@ System $System
K| Mol]

Fig Directory volume with configuration of the development station newton

When the development station is configured, you build by opening the configurator for the
volume that is to be simulated, and activate 'Build Node' and select the development station
in the viewed list of nodes.

Before starting the runtime you have to define the environment variable PWR_BUS_ID to the
identity fo the simulation bus. A default value for PWR_BUS_ID is set in the file
letc/proview.cnf, parameter QcomBusld. With the command

> echo $PWR BUS I D

you check the bus identity, and with the command

> export PWR_BUS | D=999

you assign another value. This command you can for example insert in $pwrp_login/login.sh.
Now you can start the ProviewR runtime with

>rt_ini &

and stop with

> . pw _stop.sh

If ProviewR doesn't start you can add -i to the start command to see error messages.
>rt_ini -i

Note that you always have to reset by executing '. pwr_stop.sh' before a new start attempt.

When the runtime environment is running you can explore the system by starting the runtime

19.2.1

navigator
>rt_xtt

You can also use the runtime monitor to start the runtime environment. See below.

Simulate Server

A simulate server can be started to control the execution of the plc program, and to store
the

Database Message [9;5M-I-STEFFED, Plc threads stepped [Reset] [Show Server]
PleThread | Halt | [Step | [Continue] PlePgm [Select all] [clear all]
PlcThread Count Description PlcPgm PleThread Description

[T[] Modes-Opgr-Plet-200ms 9548 1 MO Hi-Hi-Fe Nodes-Opg7-Ple1-200ms

[][] Modes-Opgr-Plet-2s 954 pOL Hi-PE Nodks-Opg7-Ple1-200ms | |

A Nodes-Cper- Plez-10oms 18358 A H-Presiow Nodks-Opgr-Piet-25

[+ Nodes-Opgr- Ple3-100ms 18356 Ll . L | Hi-Ple2 Nodes-Opgr- Plo4-20ms

A Nodes-Cpgr-Plea-20ms 812 B[] HzPe Nodks-Opgr-Pled-20ms

[] pACI [HePe Nodks-Opgr-Plt-200ms

| | Al L] HrPe Nodks-Opgr-Plet-200ms

[1l L] HePe Nodks-Opg7-Ple1-200ms

:I AL T[] HizPe Nodks-Opgr-Plt-200ms

| | AL L] HizPe Nodks-Opgr-Plet-200ms

[] AL HiePe Nodes-Opg7-Ple1-200ms

:I MO Hisrr Hosdes-Ope-Ple1-200ms

1l A Heipe Nodes-Opgr-Plo2- 00ms

[] = B HzzPe Nodes-Opg7-Ple3100ms

[| I v I [] HzsPe Nodks-Opgr-Flcd-20ms

[1l B HesPe Nodes-Opgi-Pled-20ms

[| I B[] HesPe Nodks-Opgr-Plea-20ms

[| [I [] Her-Pe Nodks-Opgr-Piza-20ms

[1l B[] HesPe Nodks-Opgi-Plea-20ms

19.3

Runtime Monitor

Often you want to start the runtime environment on the development node, for example
if you have made a change in the system that you want to test, before sending it
down to the production system.

The Runtime Monitor is used to start and stop the runtime environment on the
development station.

19.4

& Runtime Monitor =101 %]
File \iew Help

Q|| m| || 2

start Runtime Running

Restart Runtime

Stop Runtime

= O pwrd2 Proview running | |
= Description
[0 @ SystemStatus Proview running

= SystemTime 15-MAY-Z2007 15:48:36.14

= BooiTime 15-MAY-2007 15:48:35.49

= RestartTime 01-JAN-1970 01:00:00.00

= Restarts 1]

= Yersion V4.4.0-1 =

[4

2

To start the runtime environment on the development station, the following requirements
have to be fulfilled

- the node should be configured with a NodeConfig object in the project volume.

- the correct comunication buss should be set. To do this you set the bash environment variable
PWR_BUS ID to the buss stated in the BusConfig object in the project volume, for example
export PWR_BUS | D=999

The runtime monitor also requires a StatusServerConfig object to be configured below
the $Node object in the volume to start.

The Runtime Monitor is started from Tools/Runtime Monitor in the menu. There are buttons
to start and stop the runtime environment (‘Start Runtime' and 'Stop Runtime’). In the
colored square, the status of the runtime environment is displayed ('Running' or 'Down’).
The color indicates the status of the system, red for error status, yellow for warning,

and green for OK.

The button 'Restart Runtime' performs a soft restart, and can be used if the runtime
is started already.

Process and operator stations

In this section we go through the steps to start ProviewR on a process or operator station.

- configuration of the node in the directory volume
- build the node

- installation of the runtime package

- distribute to the node

- start the runtime environment on the node

Directory volume configuration

The node has to be configured in the directory volume by a NodeConfig object. This is placed
below a BusConfig object that contains the bus identity for the production bus. In the

NodeConfig object the node name and IP address are configured, and below the NodeConfig object
there is a RootVolumeLoad object that states which root-volume is to be started on the node.

The node is built from the rootvolume configurator by activating '‘Functions/Build Node' and
selecting the process station in the node list (if there is only one single node configured
the node list is not viewed).

Installation of the runtime package

The runtime package is installed on the process/operator node by installing the pwrrt package
of the present Linux distribution. Read the installation guide on the Download page on
www.proview.se for more information.

19.4.1 Distribute

Distribute, means collecting the files that are created when the node is built, and that
is needed to execute the runtime environment, into a package. The package is copied to the
process or operator station and unpacked there.

Which files are going to be a part of the package, is configured in the directory volume with

a Distribute object beneath the NodeConfig object of the node. The Distribute object contains

the attribute Components where you specify what types of components or files that are selected.
If there are components specified that are not generated, a warning message will comply with the
distribution.

ra PwR Directory, eric on trafficcrossl
Fi

le Edit Functions View Options Tools Help
8| 2| 85| w o8 v|6|m| @& |R)
& VolOpTrafficCrossl RootVolumeConfig [«] | & Prd BusConfig Production communication bu <]
VolTrafficCrossl RootVolumeConfig Pr Fr crossl NodeConfig Process station
% VolTrafficCrossl RootVolumeload
B § Distribute
(= Components 4095
= UserDatabase]
= LoadFiles 7]
= ApplFile 7]
= PwrpAliasFile 7]
= IncludeFiles 7]
= GraphFiles]
= XttHelpFile]
= XttResourceFile]
= XttSetupFile 7]
= FlowFiles 7]
= RHostsFile 7]
= WebFiles]
= PwrpStop []
= AuthorizedKeysFile]
[0 opcrossl NodeConfig Operator station
O Simg99 BusConfig Simulation communication bus
— | € System §System —
Kl IO | KT |

Fig The Distribute object

If there are other files, e.g. application programs, that are to be a part of the package, you
add an object of type ApplDistribute below the Distribute object. In the ApplDistribute object
you can state which files are to be added (specification with wildcard is allowed) and where
they are to be copied.

All files needed at runtime should be a part of the package. It is important that a package
represents a complete version of the system, making it possible to restore the runtime
environment if you for example want to go back to a previous version. If a disk crash occurs,
it is also important to be able to restore the system on a new disk without any manual
copying and modifications of files.

The distribution is performed from the Distributor that is opened from 'Functions/Distribute’
in the Configurator menu. Select the node you want to distribute to, and select
'Functions/Distribute’ in the Distributor menu.

19.4.2

19.4.3

i Distributor _ |||

File Functions View Help

i 54 [58 [b

[opcrossl
(O newton

Kl ']

Fig The distributor

The distributor will now collect the specified files into a package and copy the package to
the user 'pwrp' on the process node with ssh. ssh requires password, and this has to be
typed two times in the terminal window from which the configurator is started. At installation
the user 'pwrp' is given the password 'pwrp’, but this may have been changed for security
reasons.

If you don't have network contact with the process station, you can create a package and move

it to the process station for example with an USB stick. Select the node in the Distributor

and activate 'Functions/Create Package'. The package is stored on $pwrp_load with the name
pwrp_pkg_'nodename’_'version'.tgz, e.g. pwrp_pkg_crossl_0002.tgz. On the process station you
unpack the package with the script pwr_pkg.sh -i which takes the name of the package as argument.

> pw _pkg.sh -i pwp_pkg_crossl_0002.tgz

Restore a previous version

Sometimes a modification of the system doesn't work as planned, and you want to restore a
previous version. This is easily done with pwr_pkg.sh. The packages are stored in the home
directory of user pwrp, /nome/pwrp. By finding the package for the previous version and start
pwr_pkg.sh -i with this package, you restore the version.

> pw _pkg.sh -i pwp_pkg_crossl_0001.tgz
Bus identity

The QCom bus identity for the node is set in the file /etc/proview.cnf.

Default QCOM Bus |d
gqconBusld 517

This value has to correspond to the configured bus id for the node in the directory volume.
The current bus id is stored in the environment variable $SPWR_BUS_ID.

Start the runtime environment

The runtime environment on a process or operator station is started with the command

> pw start

and stopped with
> pwr stop
or

> pw Kill

The command 'pwr stop' requires that all processes are alive, while 'pwr Kill' clears all
in all situations.

If proview runtime doesn't start correctly, you can start with the command
>rt_ini -i

to view console loggings in the terminal window.
Always reset with 'pwr kill' before a new start attempt.

20

The Configurator

The configurator is used to navigate in, and configure the Workbench.

The configurator displays the objects in one volume. The objects are usually separated in two
windows, a left and a right, and how the separation is done depends on what type of volumes
are handled.

- For rootvolumes and subvolumes, the plant hierarchy is displayed in the left window, and
the node hierarchy in the right.

- For the directory volume, volumes are displayed in the left window and buses and nodes in
the right.

- For class volumes, classes are displayed in the left window and types in the right.

From 'View/TwoWindow' you can choose whether to display two windows or only one. If only one
window is displayed, every second time you activate 'TwoWindow' the upper window will be
displayed, else it will be the lower window.

From 'Edit/Edit mode' you enter edit mode, and a palette with various classes is displayed to
the left. You can now create new objects, move objects, change values of attributes etc.

Volume representation

Volumes are stored in various formats, in a database, in a loadfile or in a textfile. The
configurator can display a volume in all these formats, and it has four different
representations of volumes:

- db, a database. Rootvolumes and subvolumes are created and edited in a database. Before you
can start the runtime environment, loadfiles are generated from the volumes. The loadfiles
are read at runtime startup. The db representation i editable.

- wbl, a textfile with extension .wb_load. The classvolumes are stored as wbl, and root and
sub volumes can be dumped in a wbl-file, for example when upgrading, and later reloaded. The
wbl representation is not editable. When editing a class volume you import the wbl
representation to a mem-represention, and then save it as wbl again.

- dbs, a loadfile. From rootvolumes, subvolumes and classvolumes, in db and wbl representation,
loadfiles are cerated and used in the runtime environment. The configurator also reads the
dbs-files of the classvolumes to be able to interpret the classes, and the dbs-files of the
root and subvolumes to be able to translate references to external objects. The dbs
representation is not editable.

- mem, a volume the configurator keeps internally in memory. Copy/Paste buffers consist of
mem-volumes. The classeditor imports the classvolume, which originally is a wbl, to a mem
volume, as the mem representation is editable.

As we see above, the same volume can exist both as a database or as a loadfile. When staring
the configurator, you specify a volume as an argument. For this volume, the database is opened,
i.e. itis represented as a db, for the other volumes in the project, the loadfiles are opened,

i.e. they are represented as dbs. This makes it possible to display the other volumes in the
project, and to solve references to them, but they are not editable. If the database of the

volume is locked, because someone else has opened it, an error message is displayed and the
loadfile is opened instead of the database.

In the figure below the volume list is displayed, which is opened from 'File/Open' in the menu.
It shows all volumes opened by the configurator. We can see that the database for the root
volume VolTrafficCrossl is opened, while the other root volume, VolOpTrafficCross1 is opened
as a loadfile. Also the class volumes are opened as loadfiles.

il PwR Yolumes =10] x|

File Functions

VolTrafficCrossl Db RootVolume
WolOpTrafficCrossl Dbs RootWVolume

L4]

Ok Cancel

If no volume is given as argument when starting the configurator, the database of the
directory volume is opened, and the other volumes are opened as dbs-volumes.

Navigate

The objects of the current volume are displayed in the configurator. The objects are ordered
in a tree structure, and objects with children are displayed with a map, and objects without
children with a leaf. For each object the object name, class and possible description is
displayed as default(the description is fetched from the Description attribute in the object).

By clicking with MB1 on a map, the map is opened and the children of the object are displayed.
Is the map already open, it will be closed. You can also open a map with a doubleclick anywhere
in the object row.

If you want to see the content of an object, click with Shift/Click MB1 on the map or leaf,
or Shift/Doubleclick MB1 anywhere in the object row. Now the attributes of the object are
displayed, together with the value of each attribute. The attributes are marked with various
icons dependent of type.

Bitmaps for different types of attributes

BitmapDemo
= OrdinaryAttr
(B Arrayattr

El Enumatir

gl Maskattr
-0 ObjidAttr
—$=

8

AttrRefAttr
Objectattr

- An ordinary attribut is marked with a long narrow rectangle.

- An array is marked with a map and a pile of attributes. The array is opened with Click MB1
on the map, or Doubleclick anywhere in the attribute row. Now the elements of the array
are displayed.

CE Arrayattr

Arrayattr[0]

Arvayattrl]

Arrayattr[e]

ArrayAttr[3)

- An attribute referring another attribute or object, i.e. of type Objid or AttrRef, is marked
with an arrow pointing to a square.

- Enumeration types, Enum, is marked with am map and some long narrow rectangles. By clicking
MB1 on the map the different alternatives of the enumeration are displayed. The alternatives
are displayed with check boxes, and the chosen alternative is marked. You can also
Doubleclick MB1 in the attribute row to display the alternatives.

(= EnuméAtir Apple
Apple

Orange

Banana

strawherry

Grape

1] 1w

- Mask types, Mask, is marked similar to Enum, an the different bits are displayed with Click
MB1 on the map, or Doubleclick MB1 in the attribute row.

[~ MaskAttr 10
= Apple [
= Orange]
= Banana]
= Strawberry]
= Grape]

- Attribute objects, i.e. attributes that contain the datastructure of an object, are marked
with a square with a double line on the upper side. The attribute object is opened with
Click MB1 on the square, or Doubleclick MB1 in the attribute row.

An object or attribute is selected with Click MB1 in the object/attribute row (not in the map
or leaf). With Shift/MB1 you can select several objects. With Drag MB1 you can also select
several objects.

From an ergonomic point of view, it is often better to navigate from the keyboard. You mainly
use the arrow keys. First you have to set input focus to the window, by clicking on it. Input
focus between the left and right window is shifted with TAB.

With ArrowUp/ArrowDown you select an object. If the object has children, you open the children
with ArrowRight, and close with ArrowLeft. The content of the object, i.e the attributes, are
displayed with Shift/ArrowRight and closed with ArrowLeft.

An attribute that is an array, enum, mask or attribute object, is opened by ArrowRight and
closed by ArrowLetft.

When you feel at home in the object tree, you can set yourself as 'advanced user'. Additional
function is the placed in the arrow keys. ArrowRight on an object, displayes for example the
attributes of the object, if it has no children. If it has children, you have to use
Shift/ArrowRight as before.

Editing

When editing a volume, you create new objects, copy objects, remove objects and change values
of attributes.

Create an object

You create an object by selecting the class of the object in the palette. The palette is

divided in the folders Plant, Node and AllClasses. Under Plant you find the most common classes
in the plant hierarchy, under node the most common in the node hierarchy. If the class is not
found here, all the classes are available under AllClasses. Here, all the class volumes are

listed, and under each volume, the classes of the volume. After that, you click with the

middle mousebutton on the future sibling or parent to the new object. If you click on the

map/leaf in the destination object, the new object is placed as the first child, if you click

to the right of the mapl/leaf, it is placed as a sibling.

You can also create an object from the popup menu. Select a class in the palette and open the
popup menu by Click MB3 on the destination object. Activate 'Create Object' and choose where
to put the new obiject, relatively the destination, before, after or as first or last child.

The Configurator in edit mode

il PwR Navigator Yolume YolTrafficCross1, eric on trafficcrossi

File Edit

Eunctions \ijew Options

Help

=181 x|

A RER

= Plant -
<& $PlantHier
[Signals
(] DataStorage
] Supervision
<% PlcPgm
<% Backup
<& $LibHier
<& $DocHier
% $Mountobject
& $Alias
(] Node
= Allllasses
[pwirs
| pwrh
<3 Afrithm
<3 Abs
& ACos
& Add
3 Adelay
& Al
3 Aifwea
<& And
& Ao
<8 hofrea
<8 fApCollect
<8 ApDistribute
<8 pppiDistribute
<8 fpplication
3 ASin
3 ASup
& Atddd
<8 ATan

alo| alx|a|ak]

[= TrafficCrossl $PantHier
(O TrafficlightH3 $PlantHier
[0 TrafficlightEW $PlantHier
= ControlSignals $PlantHier

< Reset Dv
& ServiceSwitch Di

<% OperatorSwitch Dv
& ServiceMode Dv
& ServiceModelnd Do
& Mode Dv
& Modelnd Do

(30 ControlPgm PicPgm

fay
oy

DD& @

Hodes $HodeHier
crossi FHode Proces:
MessageHandler MessageHandler
IOHandler 10OHandler
Flc PlcProcess
Rack0 Rack_S3AB

L]

Delete an object

An object is deleted from the popup menu. Click MB3 on the object and activate 'Delete Object'.

Move an object

You can also move an object from the popup menu, but it is often easier to use the middle
mouse button: select the object that is to be moved and click with the middle button on the
destination object. If you click on the map/leaf on the destination object, the object is

placed as first child, else as a sibling.

Note! Avoid using Cut/Paste to move an object. This will create a copy of the object with
a new object identity, and references to the object might be lost. You can use the command

paste/keepoid to keep the identity.

Copy an object

You can copy an object with copy/paste or from the popup menu.

- copy/paste. Select the object or objects that are to be copied and activate 'Edit/Copy’
(Ctrl/C) in the menu. The selected objects are now copied to a paste buffer. Select a
destination object, and activate 'Edit/Paste' (Ctrl/V). The objects in the paste buffer are
now placed as siblings to the destination objects. If you instead activate 'Edit/Paste Into’
(Shift+Ctrl/V) the new objects are placed as children to the destination object. If the
copied objects have children, the children are also copied by copy/paste.

- from the popup menu. Select the object or objects that are to be copied, open the popup
menu from the destination object, and activate 'Copy selected object(s)'. You now have to
choose where the new objects are to be placed, relative to the destination object, as first
or last child, or as next or previous sibling. If the copied objects have ascendants, and
they also are to be copied, you activate 'Copy selected Tree(s)' instead.

Change object name

The name of an object is changed by selecting the object, and activating 'Edit/Rename'
(Ctrl/N) in the menu. An input field is opened in the lower region of the configurator, where
the new name is entered. An object name can have max 31 characters.

You can also change the name by displaying the object attributes. In edit mode, the object
name is displayed above the attributes, and is changed in the same way as an attribute.

Change an attribute value

Select the attribute to be changed, and activate 'Functions/Change value' (Ctrl/Q) in the menu.
Enter the new value in the input field. If you want to terminate the input, you activate
‘Change value' again.

Not all attributes are editable. It depends on the function of the attribute, if it is to be
assigned a value in the development environment or not. Editable attributes are marked with
an arrow.

You can also change the value of an attribute from the object editor, opened from the popup
menu (Open Object). An attribute of type multiline text, can only be edited from the object
editor.

As 'advanced user' you can open the input field with ‘ArrowRight’, as a faster alternative to
‘Change value'.

Symbol file

The symbolfile is a command-file that is executed at configurator startup.

It can contain definitions of symbols and other configurator commands.

The default filename of the symbolfile is $pwrp_login/wtt_symbols.pwr_com.
Here are some examples of useful commands.

Shortcut to somewhere in the database hierarchy:

20.1

define rb9 "show children /name=hql -rb9"

Object Editor

The quantity of data for an object is divided in attributes. The Object Editor displays the
attributes of an object and value of each attribute. If you are in edit mode, you can also
change the values of the attributes.

The attributes are displayed in the same way as in the configurator, the main difference is
that they are displayed in a separate window.

Navigate

Navigation and assignment of values is also done in the same way as in the configurator.

Start

The Object Editor is opened from the Configurator or the Plc editor. Activate 'OpenObiject' in
the popup menu for an object, or select the object and activate 'Functions/Open Object' in the
menu. From the Plc editor you can also start the object editor by doubleclickning on the
object. If the Configuration/Plc editor is in edit mode, the Object Editor is also opened in

edit mode.

Menu

File/Close close the object editor.

Functions/Change value open the input field for the selected attribute.
This is only allowed in edit mode.
Functions/Close change value Close the input field.

Object Editor
ixi Object Attributes -10] x|

File Eunctions Help

= » ObjectHame Dvl -
= Actualvalue]

= } [InitialValue 1]

—+=} DefGraph

—+=p DefTrend

=} HelpTopic

= » DataSheet

=} CircuitDiagram

= } HNote

Kl |

value = |Sume descripti0n|

The Object Editor has an input field to enter multiline texts. In this case you can not
terminate the input with 'Enter’, as for singleline texts. You either click on the 'Ok’ button
or activate 'Functions/Close change value' (Ctrl/T) to terminate.

A Multiline text

i objectEditor i =10] %
File Functions Help
= Qutid 0 Used []
= Qutls 0 Used []
= Qutls 0 Used []
= } PicHode

classdef Dal VW2H1T_Plat p;

if {p&&dl && d2 && p-=MaxHastighe
od1 = !{p->MaxHastighet = Al &&
p-=MinHastighet <= A2 &&
temp_check{ I1, p));
else

odl = 0;
od? = p && p-=IntemiarkAg;
od3 = p && p-=PrioBDB;

if {p && d1 && d2 && p-=MaxHastighet != 0)
odl = !{p-=MaxHastighet == A1 &&
p-=MinHastighet «= A7 &8&
temp_check(I1, p});
else
odl = 0;
0dZ = p && p-=IntemMarkHg;

Ok | Cancel)

The Object Editor for plc objects has functions to state which inputs or outputs that are to
be displayed in the function block. You can also choose if digital inputs are to be inverted.
This is chosen with check boxes for each attribute respectively (‘Used' and 'Inverted'). The
check box for 'Used' can also be changed from the keyboard with 'Shift/ArrowRight’, and the
check box for 'Inverted' can be changed with 'Shift/ArrowLeft'.

Plc object with check boxes

20.2

%1 objectEditor b =101 %]
File Functions Help
= » ObjectHame And4 A
= Inl 0 Used [m| Inverted []
= I|n2 0 Used [m| Inverted ||
= In3 0 Used [m| Inverted [
= Ind 0 Used [m| Inverted []
= In5 0 Used [] Inverted []
= In6 0 Used [] Inverted []
= In7 0 Used [] Inverted []
= In 0 Used [] Inverted []
= Status 0 Used [m ¥
~J =

J_

Object Text Editor

For text attributes in objects as BodyText, HelpText, CArithm and DataArithm a special
text editor is available. The editor is opened by right-clicking on the object in the
plc editor and activating EditText or EditCode in the popup menu.

Menu

File/Close close the text editor.

File/Save Save the text to the object attribute. Note that the text is not saved
in the database until the plc editor session is saved.

Edit/Copy Copy selected text to the clipboard.

Edit/Cut Cut selected text.

Edit/Paste Paste text from the clipboard into the current cursor position.

Object Text Editor

20.3

H1-Plc-W-BodyText12, Text

File Edit Help

The Spreadsheet Editor

The Spreadsheet editor is used to view or configure several objects of the same class
simultaneously. Objects for a certain class, below a specified object in the object tree, are
displayed in a table in the editor. In the table also the values of an attribute in the

objects are displayed, and you can easily shift between different attributes.

The Spreadsheet Editor is opened from the configurator: 'Functions/Spreadsheet' in the menu.
If the configurator is in edit mode, the Spreadsheet Editor is also opened in edit mode.

When the spreadsheet editor is started, you first have to state which objects are to be
displayed, i.e. which class they belong to and under which hierarchy the are placed.This
is done by activating 'File/Select Class' in the menu. Enter class, hierarchy and state

if attribute objects, i.e. objects that reside as attributes in other objects, are to be
displayed. It's also possible to select objects by name with a wildcard search pattern.

Choose class and hierarchy

Select Class

Class [Di]
Hierarchy [Merk-Cnmpnnents-baseUalve]
Name [*sw]

Attribute Objects:

After this you choose which attribute is to be displayed. Select an attribute in the attribute
list and click on 'Ok’, or doubleclick on an attribute.

Choose attribute
" Attributes

Description
SigChanCon
Valuelndex

Actualvalue
InitialValue
Sigvalue
XttMethodsMask h
DefGraph
DefTrend
HelpTopic
DataSheet
CircuitDiagram
Photo

Mote

FiltarTima

The result is shown in the figure below. Here, the attribute 'Description' was chosen. You
can easily view the other attributes in the object by activating 'File/Next Attribute’
(Ctrl/N) and 'File/Previous Attribute' in the menu.

20.4

20.5

20.6

Spreadsheet Editor
| [*x'Spreadsheet Editor

File Functions Help

= } Merk-Components-baseValve 1, SwitchOpen,Description Open switch

= p Merk-Components-baseValve w1 SwitchClosed Description Close switch

- 0 0 0 00 00000 B

Menu
File/Select Class State class and hierarchy for the objects that are to be displayed.
File/Select Attribute State which attribute is to be displayed.
File/Next Attribute Display the next attribute for the object in the table.
File/Previous Attribute Display the previous attribute for the objects in the table.
File/Print Print the table.
File/Close Close the Spreadsheet Editor.
Functions/Change value Open an input field for the selected object.
Functions/Close change value Close the input field.

Help window

The helpwindow is used to view and navigate in help texts. The help texts can be various
manuals and guides that comes with ProviewR, or helptexts written by the constructor to
describe the plant and to give assistance to the operators.

Message window
The message window displays messages from ProviewR that are transmitted at various

operations. The messages can have five levels of severity, that are marked with different
colors:

S Success green
| Information green
W Warning yellow
E Error red

F Fatal red

If an arrow is displayed in front of the message, the message contains a link to an object.
By clicking the arrow, the object is displayed.

Utilities

The utilities window is a graphic interface to different configurator commands.

For more information about the commands, see chapter Commands.

20.7 Backup utility

The backup utility analyses a runtime backup file. It makes it possible to

- inspect the content of the backup file.

- see the difference between two backup files stored and different times.

- see the difference between the backupfile and the corresponding values in the
development database.

- Transfer selected values from the backup file to the development database.

The backup function in the ProviewR runtime enviroment, stores the values of
objects and attributes specified with Backup objects, in the backup file. The

is read at ProviewR startup and the previously stored values are inserted into
the realtime database.

Display the content of a backup file

Open the backup utility from the root volume configurator of the node from which the
backup file is fetched. The backup utility is opened with the command 'backup show'.
Activate File/Open in the menu and select a backup file. The backup file can be a copy
of the current backup file or a copy from a previous occation. All the attributes and
their values are displayed in the backup window.

I

ile Edit View Help

WolOpg7:H50-Av1 . Actualvalue 33.33 m
WolOpg7:H52-EPower.Mode. OpRefMan 100
WolOpg7:H52-Plc-W-EPowerAggrFo0-W-Mode AutoMode 0
WolOpg7:HS5-M2.SimConnect -
WolOpg7:HS5-M2.PlcConnect -
WolOpg7:H5-M2.5upDisabled]
WolOpg7:HS5-M2.Motor. SimConnect
WolOpg7:HS5-M2.Motor.PlcConnect
WolOpg7:HS-M2.Motor. SupDisabled
WolOpg7:HS 2. Motor. Displayind
WolOpg7:H5-M2. Motor. IndWarning
WolOpg7:HS-M2.Motar.IndError
WolOpg7:H5-M2.Motor. TempSensor. SimConnect
WolOpg7:HS5-M2.Motor. TempSensor.PlcConnect - [~]

o o oo !

Sy =Y =1 =N =R =] =Y =l =R = =] =Y ===

Fig Display backup file

Compare two backup files

Open the first backup file for display as described above. Then activate
File/Compare Backup File in the menu and select the other backup file. The attributes
with values that differs between the files are now displayed.

Compare a backup file with the development database

Open the backup file for display, and then activate File/Compare Database in the menu.
The attributes with values that differs between the backup file and the development
database in now displayed.

20.8

20.9

Transfer values from a backup file to the development database

Enter edit mode in the configurator and then open the backup utility. Open the backup
file for display, and then compare this with the values in the development database from
File/Compare Database in the menu. The attributes with values that differs between the
backup file and the database are now displayed with checkboxes. Check the values you
want to transfer, and activate File/Transfer to database in the menu. Finally activate
Save in the configurator to store the modifications.

Build Directories

The Build Directories window displays the directories with configured build actions. The
check box for each directory shows if the directory will be built or not, ie if anything
has to be updated in the directory.

Note! If a file is stored after the Build Directories window is opened, the update button
has to be pressed to show the correct status. Otherwise the stored file will not be
updated when the directory is built.

The directory folders can be opened to view the files, makefiles or scripts that are to be
updated. By activating 'Edit/Show all' in the menu also files and makefile that are not
to be updated are viewed.

Only directories and files that are checked are executed. Individual directories or
files can be built by clearing the check boxes for other directories and files.

By pressing the 'Build Directories' button in the toolbar the build is executed.

The directories and the build actions are configured in the directory volume.

Build Export and Import

The Build Export window displays files that should be exported to other projects or modules.
Common files between projects can for example be dbs-files for class volumes or h-files for
transactions between nodes. Normally files are exported from a project to a common directory,
from where they later are imported by other projects. It's not recommended to import or

export directly from or to other projects.

By pressing the 'Export files' button in the toolbar the export is executed.

The Build Import window displays files that should be imported from other projects and
modules.

By pressing the 'Import files' button in the toolbar the import is executed.

21 Plc Editor

In The Plc Editor you create plcprograms in a graphical programming language.

Programming with function block is made in a horizontal net of nodes and connections from left
to right in the document. Signals or attributes are fetched on the left side of the net, and

the values are transferred via connections from output pins to input pins of functions blocks.
The function blocks operate on the values, and on the left side of the net, the values are

stored in signals or attributes.

Grafcet sequences consist of a vertical net of nodes and connections. A state is transferred
between the steps in the sequence via the connections. Grafcet and function block nets can
interact with each other and be combined to one net.

Start

The Plc editor is opened from the configurator. Select an object of class PlcPgm and activate
'Functions/Open Program' (Ctrl/L) in the menu, or activate 'Open Program' in the popupmenu
for the PIcPgm object. The configurator should not be in edit mode.

Working mode

The Plc editor can be in four different modes: View, Edit, Trace and Simulate. The mode
is selected under 'Mode' in the menu.

View
In View you can look at the program, but not create or modify objects. The menu alternatives
for edit functions are dimmed.

Edit
If you have edit privileges you can enter the edit mode. Now it is possible to create and
modify objects.

Trace and Simulate

If you want to trace the program you enter the trace mode. This requires that the ProviewR
runtime environment is started in the development station. Simulate works as trace, but
you can also set values to signals.

Trace is easier and faster performed from Xtt. We recommend that you use PlcTrace in
Xtt instead.

Editing

The Plc editor consist of

- a working area.

- tow palettes, one for function objects and one for connections (only one palette at a time
is visible).

- a navigation window, from which the working area can be scrolled and zoomed.

The Plc editor

i%i TrafficCross 1-ControlPgm

File Edit

Search View Functions

Mode Help

=10/ %]

[7]]

slojaln|alr|m]

151

T4

53

Orda |
ord5

54

StoDo

RedHS | DoS-00

StoDo

RedEW | Do%-03

ords | |
ord?

55

StoDo

RedNS | Do5-00 |

StoDo

Vellowls | Do5-01 |

StoDo

RedEW | Do5-03 |

56

StoDo

GreenhS | Do5-02 |

StoDo

RedEW | Do5-03 |

ordio | |
Ord11

[——

StoDo

Vellowhs | Do5-01 |

StoDo

GreenhS | Do5-02 |

StoDo

RedEW | Do5-03 |

7 Analog
"1 Control
1 Drive
1 Edit

] Grafcet
7 Integer
= Logic

< Edge

<& FirstScan
& Inv

& 0Or

< Pulse

@ SRR

@ SR_S

< Timer

< Wait

<3 Waith

B XOr

1 T Nups

1 1 Other

| C3 signals

(7 TLog

(3 Components

0 f Cnjm

NOEEERD

The Palettes

The Object Palette

When you start the Plc editor, the function object palette is displayed. When creating a
function block in the work area, you choose a class in the palette.

The Connection Palette

When you create connections between objects, the editor chooses a suitable type of connection.
Though, in some cases the constructor has to influence the choice of connection type. This

is done in the connections palette that is displayed by activating 'View/Palette/Connection’

in the menu. When the palette is closed, by activating 'View/Palette/Object' or
‘View/Palette/Plant’, the editor is again responsible for choice of connection type.

Plant Hierarchy

You can view the plant hierarchy by activating 'View/Palette/Plant' in the menu. When
connecting function objects to signals, for example when fetching signal values, it is possible
to indicate which signal is to be fetched. You can also select the signal in the configurator,
which in many cases is a smoother alternative.

Navigation window

Down to the left there is a view of the program in reduced scale. The part of the working
area that is displayed in the main window, is marked with a rectangle. By moving the rectangle
(Drag MB1) you scroll the main window. You can also zoom with Drag MB2.

Function objects

Create object

To create objects the editor has to be in edit mode. Enter edit mode from 'Mode/Edit' in the
menu.

To create an object, you select a class in the palette, and click with MB2 (the middle button)
in the working area.

Modify an object

An object is created with certain default values. This applies also to which inputs and ouputs
are viewed in the plc editor and can be connected to other objects. If a value is to be changed
the object editor is opened for the object. The object editor is opened in following ways:

- doubleclick on the object
- activate 'Open Obiject' in the popup menu for the object.
- select the object and activate 'Functions/Open object' in the menu.

From the object editor you can change the values of various attributes. The attributes for a
plc object are separated into input attributes, internal attributes and output attributes.

Inputs

The value of an input attribute is fetched from another function block, via a connection.

The attribute is displayed in the function block as an input pin. In some cases the input is
not used, an and-gate has for example 8 inputs but often only two of them are used. This is
controlled by the 'Used' check box in the object editor. If '‘Used' is marked, the attributes are
displayed with an input pin, else they are hidden.

Some input attributes, especially of analog type, can be assigned a value in the object editor.
If 'Used' isn't marked for the attribute, the assigned value is used. However, if 'Used' is
marked the value is fetched from the output the attribute is connected to. This is for

example the function for the limit values 'Min' and ‘Max' in a Limit object. You can choose
whether to fetch the value from another function block, or to assign a value. The assignment

works in runtime as an initial value, that later can be modified in various ways.

Some digital inputs can be inverted. To do this you mark the check box 'Inverted' in the object
editor. In the function block this is displayed with a circle on the input pin.

Internal attributes

Internal attributes can contain configuration values that are assigned in the development
environment, or values that are calculated in runtime. The latter type is not changeable, and
maybe not even visible in the development environment.

Outputs

The value of an output attribute is transferred to an input via a connection. As for an input,
you can choose whether to display an output pin or not with the 'Used' check box in the
object editor.

Select an object

Objects are selected in the following ways

- click with MB1 on the object.

- Shift/Click MB1 adds the object to the list of selected objects, or removes it if the
object already is selected.

- by Drag MB1 you can select one or several objects. Objects that have some part within the
marked rectangle are selected.

- by pressing the Shift key and Drag MB1 you add the objects in the marked rectangle to the
selectlist.

Selected objects are drawn with red color.

Move objects

A single object is moved by placing the cursor on it and drag with MB1.
Several objects are moved by selecting them and dragging one of the objects with MB1.

Connections

Create connections

An output pin and an input pin is connected in the following way

- place the cursor on the pin, or in an area in the function object close to the pin, and
push MB2 (the middle button).

- drag the cursor to the other pin. or to an area in the function object close to the pin,
and release MB2.

A connection is now created between the objects.

Two inputs are connected in the same way, but some of the connected inputs have to be connected
to an output, and from this output the value is fetched to all the connected inputs.

Data types

The values that are transferred between different objects via the connections can be digital,
analog, integer or string values. Inputs and outputs that are connected have to be of the same
type. If they are of different type you have to use an object that converts between the types,
e.g Atol or ItoA. These conversion objects are found under 'Signals/Conversion' in the palette.

Analog and integer connections are marked with slightly thicker lines, and digital connections
with thinner lines.

Furthermore there is a connectiontype for transfer of an object reference. These are drawn with
a thick, dashed line.

Reference connections

If the editor has difficulties to find a path for the connection between the input and output

pin, because there are too many objects in the way, or because they reside in different
documents, the connections are drawn as reference connections. Reference connections can also
be drawn by activating 'View/Reference connection' in the menu.

Reference connection

—1 And —lﬂﬁl

——1 And4

[RE]q am [—
And3

Execute order

Besides transferring a signal value, the connections also determine the execute order between
different function blocks. If two objects are connected trough an output and an input,

normally the output-object is to be executed before the input-object. But sometimes a feedback
is needed in the net, and then you face an execute order loop. To determine the execute order
you have to specify the feedback with a connection of type ConFeedbackDigital or
ConFeedbackAnalog. These are selected in the connection palette, viewed by activating
‘View/Palette/Connection’ in the menu. Under the folder ‘ConPIc’ you can find the feedback
connections. They are drawn with dashed lines.

Feedback connection
[ConPlc
<8 ConDigital L o
<8 Confnalog L
<& ConFeedbackDigital

Or or2

<8 ConFeedbackAnalog ™. e
<& ConExecuteOrder ™ !
(7 ConGrafcet N .

Here you can also find the connection type 'ConExecuteOrder'. In some cases you want to control
the execute order between to function blocks, though they are not connected to each other.

Then you can draw a ConExecuteOrder between them (between which input or output doesn't
matter). The connection is to be drawn from the object that is to execute first, to the object

that is to execute last. In the figure below, the storage of the attribute 'Temperaturer' is

done before the storage of the attribute 'Tjocklek'.

Execute order connection

= ConPlc Y|
<3 ConDigital ol StoAp | Data- MyPlatt. Tjocklek
43 Confnalog L

<8 ConFeedbackDigital
<8 ConFeedbackfnalog ™.

Stosp | Data-MyPlatt. Temperaturer

& ConExecuteOrder ™
] ConGrafcet

Fetch and store signal values

Fetch signal and attribute values

In the left side of the net of function blocks, values of signals and attributes are fetched.

The fetching is performed by objects as GetDi, GetDo, GetDv, Getli etc. Fetching of attribute
values is performed by GetDp, Getlp, GetAp and GetSp. These objects you find under the folder
'Signals' in the palette. When an object of this type is created, you have to state which

signal, or which attribute that is to be fetched. The easiest way to do this, is to select the
signal/attribute in the configurator, and click with Ctrl/Doubleclick MB1 on the object.

The signal/attribute is then displayed in the function block, and if the signal is an input

signal, the channel of the signal is also displayed.

There is a faster way to create these objects. If you draw a connection from an input pin in
a function object, and release it in an empty space in the working area, a generic Get object
is created with the datatype of the input, i.e. a GetDgeneric, a Getlgeneric, a GetAgeneric
or a GetSgeneric. When you specify the signal or attribute, the Get object is to fetch, the
generic Get object is converted to a Get object of the the correct type for the signal or
attrbute. If you choose a Dv in the configurator, a GetDgeneric will be converted to a GetDv
when clicking with Ctrl/Doubleclick MB1 on it.

Store signal and attribute values

In the right side of the net calculated values are stored in signals and attributes. The

storage is performed by objects as StoDo, StoDv, StoDp, Stolo etc. The method to specify the
signal or attribute to connect is the same as for Get objects, i.e. by selecting the
signal/attribute in the configurator and click with Ctrl/Doubleclick MB1 on the object.

If you draw a connection from an output pin in a function block, a generic Sto object is
created, that is converted to a Sto object of suitable type when connected to a signal or
attribute. If you want to store values with Set or Reset (for example SetDo or ResDo), you
can't use this method. You have to create the objects from the palette.

Generic Get and Sto objects

GetD And StoD
GetD —————— Andl
Di | 10-Di1 | Di1-00 and =] stoDo | 10-Do4 | Doz-03 |
Di |10-piz | pit-01 And1

Subwindows

Some objects contain subwindow, e.g. CSub, SubStep, Trans, Order. An object with a subwindow
is marked with a thick gray line somewhere in the function block. A subwindow is opened in
different ways:

- by selecting the object and activate 'Function/Subwindow' in the menu.

- by activating 'Subwindow" in the popup menu for the object.

- by clicking on the object with Shift/Doubleclick MB1.

You create a new subwindow in the following way (the fact that only one editing session can

be open at a time, makes it a bit complicated)

- create the object that is going to contain the subwindow
- save

- open the subwindow

- leave edit mode in the main window

- enter edit mode in the subwindow

Control the execute order

You normally don't have to consider the execute order of different function blocks in a
window. As signals are 1/O copied, i.e. every timebase in the plc program, makes a copy of
all signal values before the execution that is not changed throughout the execution. The
storing and fetching of signal values will not be affected by the execute order between
individual storing or fetching objects.

However, if you store and fetch the value of an attribute, that is not I/O copied, the
execute order can be of importance for the function.

The execute order is determined by the connections between the function blocks. The common
connections are both signal transferring and executeorder determining. If you make a feedback
you then have to choose a connectiontype that is signal transferring, but not executeorder
determining. The different feedback connections are of this type. Furthermore there is a
connection that is executeorder determining but node signal transferring, ConExecuteOrder.
With this you can control the execute order between different function blocks without
transferring any signals values.

The execute order for the function blocks in a plc window is displayed with

‘View/Show execute order' in the menu. The number displayed for each function block states
the order in which they are executed. The object without a number doesn't have any
executable code.

The execute order between different PlcPgm is controlled by the attribute ExecuteOrder in the
PlcPgm object. Exectute order determines the order within a thread. Lower values of
ExecuteOrder are executed before higher.

Compile

Before a plc window can be executed, is has to be compiled. At the same time, a syntax control

of the plc code is performed. If the syntax in not correct, a message is displayed in the

message window. The error message can be of type Error or Warning. Error is a more severe error
that has to be attended to. By clicking on the arrow in front of the message in the message
window, the erroneous object is displayed in the plc editor.

After the syntax check, c-code is generated and sent to the ¢ compiler. If there is an object
with user defined c-code, e.g CArithm or DataArithm, the ¢ compiler can find errors that
are written in the terminal window. Always look in the terminal window to check that the
compilation succeeded.

The compile is executed from 'File/Build’ in the menu.

If you want to check the syntax without generating any code, you activate 'File/Syntax'. The
¢ compiler is not activated, thus possible ¢ code errors are not detected.

Cut and Paste

The plc editor contains a paste buffer. The paste buffer is common for all windows, which
makes it possible to copy between different windows. With the functions 'Edit/Copy' and
'Edit/Cut’ in the menu, the selected objects are copied to the paste buffer (Cut also removes
them from the working area). The function 'Edit/Paste' copies the paste buffer to the working
area. The copied objects are now moved with the cursor, and you place them on the correct
position by clicking MB1 to lock them.

Cut, Copy and Paste can also be activated from the keyboard with Ctrl/X, Ctrl/C and Ctrl/V.

Special Plc objects

Here a number of objects that have special functions in the plc program are described.

Document

The document object is used to divide the code in pages, when printing the code. When you
open a new window, it contains a document object. From the object editor you can change the
dimension of the document, and enter signature and page number. Other information in the
document header is filled in automatically. The document object is found under the folder
‘Edit' in the object palette.

ShowPIcAttr
ShowPIcAttr can be used as an extension of the document header. In the object is displayed
information about volume, scantime and reset object for Grafcet sequences.

Head, Title, Text and BodyText

These objects are used to write informational text in the document. Head, Title and Text
contains singleline texts of different size with max 79 characters. Bodytext contains a
multiline text with max 1023 characters. The objects are found under 'Edit' in the palette.

Point
The point object is a free connection point that is used to branch a connection or to control
the layout of a connection. Point is found under 'Edit' in the menu.

Grafcet

Grafcet sequences are built with specific Grafcet objects as InitStep, Step, Trans and Order.
The connections between the objects follow specific rules. The vertical pins in a Step object
are for example connected to Trans objects, and the horizontal pin is connected to an order
object. Here is an example of how to create a Grafcet sequence.

Start by creating an InitStop object. Draw a connection from the lower pin, and release it

in the working area below the InitStep object. Now a Trans object is created, that is

connected to the InitStep object. Draw a connection from the lower pin of the Trans object

and release it in the working space below the Trans object. A Step object is now created there.
If you draw a connection from the Step objects lower pin, another Trans object is created.

If you want a branch of the sequence, you draw an additional connection from the lower pin of
the Step object. Now a step divergence is created with specific StepDiv connections. If you in
the same manner create a branch from a Trans object, by drawing to two connections from the
lower pin, a parallel branch, with TransDiv connections marked with double lines is created.

If you draw a connection from the horizontal pin of a Step an Order object is created, and

so on. As you can see this is a fast way to build complex sequences.

ScanTime
ScanTime feches the actual scantime, i.e. the time since the last lap.

FirstScan

FirstScan is true the first lap of the plc execution after ProviewR startup. It is also true

after a soft restart.

Menu

File/Save
File/Print/Documents
File/Print/Overview
File/Print/Selected documents
File/Syntax

File/Build

File/Plc Attributes
File/Delete Window
File/Save Trace
File/Restore Trace
File/Close

Edit/Undo Delete
Edit/Undo Select
Edit/Cut
Edit/Copy
Edit/Paste
Edit/Connect

Edit/Delete
Edit/Change Text
Edit/Expand Object
Edit/Compress Object

Search/Object
Search/String
Search/Next

View/Palette/Object
View/Palette/Connection
View/Palette/Plant
View/Reference connections
View/Grid Size
View/Show Grid
View/Zoom/In
View/Zoom/Out
View/Zoom/Reset
View/Show Execute Order
View/Redraw

Functions/Open Object
Functions/Subwindow

Mode/View
Mode/Edit
Mode/Trace
Mode/Simulate

Save

Print all documents

Print an overview

Print selected documents

Perform a syntax check of the code
Compile the program

Open the Object editor for the PlcPgm object
Delete the plc window

Save trace objects

Restore previously saved traceobjects
Close the window

Undo the last delete action

Reset the select list

Cut selected objects

Copy selected object to the paste buffer
Copy the paste buffer to the work area
Connect selected object to the selected signal or attribute
in the configurator

Delete selected objects

Change text in the selected text object
Expand the selected object

Compress the selected object

Search for an object name
Search for a string
Search further with the same string

Display the functions object palette

Display the connection palette

Display the plant hierarchy

Create connections as reference connections
Set grid size

Show the grid

Zoom in

Zoom out

Reset to original zoom factor

Show execute order for the functions objects
Redraw connections and redraw the window

Open the object editor for the selected object
Open the subwindow for the selected object

View mode
Edit mode
Trace mode
Simulate mode

Mouse functions

Working area

Click MB1

Shift/Click MB1
DoubleClick MB1
Shift+Ctrl/DoubleClick MB1

Drag MB1
Shift/Drag MB1

Click MB2
DoubleClick MB2

Shift+Ctrl/Click MB2
Shift+Ctrl/DoubleClick MB2

Press MB3

Navigation window

Drag MB1
Drag MB2

Select an object. Click in an empty space will reset the select list
Add object to the select list

Open object editor

Copy to past buffer. Click in an object

copies the object, click in empty space copies selected objects
On an object: move object or move selected objects

In empty space: select objects inside the marked rectangle

Add obijects inside the marked rectangle to the select list

Create object

Delete. Click in object deletes the object, Click

in empty space deletes all the selected objects

Paste. Copy the paste buffer to the working area

Cut. Click in an object deletes the object, click

in an empty space deletes selected objects. Deletet object are put
in the paste buffer

Popup menu

Scroll working area
Zoom working area

22 Helpfile

Helptexts are displayed in the help window that can be opened from the configurator and the
operator environment. Helptexts are written in a file $pwrp_exe/xtt_help.dat. The helptexts
are divided in topics, and each topic has a key, that is specified when the help text for

the topic is to be displayed. Links in the helptext that point to other topics, makes it

possible to navigate in the helptexts.

The topic 'index'’ is the root topic that is displayed from different utilities
- 'Help/Project' in the configurator menu.
- 'Help/Project' in the runtime navigator.

- The 'Help' button in the operator window.

Specific help topics can be opened from Ge graphs by buttons (actiontype Help), or from the
popup menu for an object in the operator environment (method 'Help').

22.1 Conversion

The helptext can be converted to html, PDF and PostScript format. When converted to html, each
topic is converted to one html page. When converted to PDF and PoscScript, there are a number
of additional tags available, to create a document of the helptext with chapters and

headers.

The conversion is done by 'co_convert'.

Conversion to html

A helpfile is converted to html with the command

co_convert -f [-d outputdirectory] 'helpfile'

Example
co_convert -f -d $pwp_web $pw p_exe/ xtt_hel p. dat

Conversion to postscript
A helpfile is converted to PostScript with the command
co_convert -n [-d outputdirectory] "helpfile'

Example
co_convert -n -d $pwp_lis $pw p_exel/ xtt_hel p. dat

Conversion to PDF

A helpfile is converted to PDF with the command

co_convert -f [-d outputdirectory] 'helpfile'

22.2

22.3

22.3.1

Example
co_convert -f -d $pwp_lis $pwp_exe/ xtt_hel p. dat

Encoding

The default encoding of the help file is ISO 8859-1. UTF-8 can be specified with a Coding
statement on the first line of the help-file, eg

Codi ng: UTF- 8

Supported values for Coding are UTF-8 and 1SO8859-1.

Syntax

There are a number of different tags that influence the search
and the conversion of the helpfile.

topic Defines the helptext for a topic
bookmark Defines a position inside a topic
link Link to a topic or an URL
index List of topics

hl Header 1

h2 Header 2

b Bold text

c Code

t Tab

hr Horizontal line

include Include other helpfiles

PDF and PostScript tags

The following tags are used to format the helptexts when converted to PDF and PostScript

chapter Divide topics in chapters
headerlevel Increase or decrease header level
pagebreak New page

option Options

style Specific text style

Titlepage and document info

Example
Topic

<topic>

<topic> begin a topic and should be placed in the first position
of a line. The topic-tag should be followed by the key that

the help function will search for. All the following lines until

a </topic> tag will be displayed as text for the topic.

<topic> 'key'

</topic>

End a topic. </topic> should be placed in the first position
of aline.

Example

<topic> start engine

The engine will be started by...
</topic>

The command
wtt> help start engine

will display the text of this topic.
22.3.2 Bookmark

<bookmark>

Bookmark is a line inside a topic which can be found by a link-tag or the /bookmark qualifier

in the help command. The bookmark tag should be placed at the end of the line and should be
followed by a name.

'some text' <bookmark> 'name'

Example
This is a bookmark. <bookmark> first_engine

The command
wtt> help start engi ne/ bookmar k=first_engi ne

will display the text of the topic and scroll to the bookmark.
22.3.3 Link

<link>

The <link> tag is a link to another help topic. The <link> tag should be placed at the

end of the line. When the line of the link is activated the topic of the link will be

displayed. The link tag should be followed by the topic, and can also be followed by a
bookmark and the helpfile where the topic resides, separated by comma. If a line contains
a link, it will be marked with an arrow.

'some text' <link> 'topic'[,'hookmark’][,'helpfile]

Example
Link to first engine <link> show engine, first_engine

22.3.4 Index

<index>
The <index> tag is a special link that will display an index of
the helpfile, that is a list of all the topics in alphabetical order.

'some text' <index>

22.3.5 Headerl

<h1l>
The <h1> tag will display a line as a header with larger text size.
The tag should be placed at the beginning of the line. A header line

22.3.6

22.3.7

22.3.8

22.3.9

22.3.10

can't contain any links.
<hl1>'header text'

Example
<h1>This is a hl header
will be displayed as

This is a hl header

Header?2

<h2>

The <h2> tag will display a line as a header with bold text surrounded
by gray lines. The tag should be placed at the beginning of the line.
A header line can't contain any links.

Example
<h2>This is a h2 header
will be displayed as

This is a h2 header

Bold

The tag will display a line with bold text.
The tag should be placed at the beginning of the line.

Example

This is a bold line
will be displayed as
This is a bold line

Code

<Cc>
The <c> tag will display a line with the code font Courier.
The tag should be placed at the beginning of the line.

Example

<c>for (i=0;i<10; i++)

will be displayed as

for (i =0; i < 10; i++)

Tab
<t>

The <t> tag makes it possible to write columns. Only three columns
(two <t> tags) are allowed.

Example

Coll <t> Col2 <t> Col3

will be displayed as

Coll Col2 Col3

Horizontal line

<hr>
The <hr> tag will display a horizontal line.

The tag should be placed at the beginning of the line.

Example
<hr>
will be displayed as

22.3.11

22.3.12

22.3.13

22.3.14

22.3.15

Include

<include>
Includes another helpfile. The <include> tag should not be placed
inside a topic.

<include> ‘filename’

Chapter

<chapter>
This tag divides the topics in chapters. A chapter begins with <chapter> and ends with
</chapter>. The title of the first topic in the chapter will be the header of the chapter.

</chapter>
Ends a chapter.

Example
<chapter>
<topic>
Introduction
</topic>
</chapter>

Headerlevel

Divides the topics in a chapter in header levels.

<headerlevel>
Increases the header level

</headerlevel>
Decreases the headerlevel

Pagebreak

<pagebreak>
Forces a pagebreak

Option

<option>
Option can have the values

printdisable Ignore the tags and text until the next 'printenable’ in PDF
and PostScript files. Normally used for links that have no effect
in PDF and PostScript.

printenable Reset the 'printdisable’.

Example
<option> disable

Some text

<option> enable

22.3.16 Style
<style>
Specifies that a topic should be written in a specific style.
Styles
function Style used for functions and commands. Large title and pagebreak after
each topic.
Example

<topic> MyFunction <style> function
</topic>
22.3.17 Title page and document info

The title page and page for document info can be created with two special topics.

__DocumentTitlePage

Topic for title page. Is place first in a help file.
<topic> ___DocumentTitlePage

;}topic>

__DocumentinfoPage

Topic for document information, eg copyright. Is placed after the titlepage.
<topic> __DocumentinfoPage
;}topic>

22.3.18 Helpfile example

<topic> helpfile_example
Start and stop of engines.

Engine 1 <link> helpfile_example, bm_engine_1
Engine 2 <link> helpfile_example, bm_engine_2
Characteristics <link> helpfile_example, bm_char

<h1>Engine 1 <bookmark> bm_engine_1
Start engine one by pressing the start button.
Stop engine one by pressing the stop button.

<h1>Engine 2 <bookmark> bm_engine_2
Start engine two by pressing the start button.
Stop engine two by pressing the stop button.

<h2>Characteristics <bookmark> bm_char
<t>Enginel <t>Engine2

Max speed <t> 3200 <t> 5400
Max current <t> 130 <t> 120

22.3.18.1

</topic>
This is the outlook of this example

Start and stop of engines.

Engine 1
Engine 2
Characteristics

Engine 1

Start engine one by pressing the start button.
Stop engine one by pressing the stop button.

Engine 2

Start engine two by pressing the start button.

Stop engine two by pressing the stop button.

Characteristics

Enginel
Max speed 3200
Max current 130

Engine2
5400
120

23

23.1

Users

This chapter describes how to create a user in ProviewR, and how to grant privileges and
access for the user.

The increasing availability of ProviewR system for different type of users, for example via the
intranet, has resulted in increasing demands of possibilities to limit the possibility for

various users to influence the system. ProviewR contains a user database, where you define

the users for different systems, and where you have the possibility to group systems with
common users. The database is designed to face the demands of increasing access control, and
at the same time to keep the administration on a low level.

User database

The user database is populated by system groups and users. When a ProviewR utility is started,
for example the opeator or development environment, there is a check that the user exists in
the database, and the privileges of the user are registred. The privileges determine what

a user is allowed to do in the system.

Systemgroup

The concept systemgroup is introduced not to have to define every system in the database.
Instead you define system groups, and connect numbers of systems to each systemgroup. These
systems will share users.

The database is built of an hierarchy of systemgroups. The hierarchy has two functions, to
describe the connection between different systemgroups, and to introduce heritage between
systemgroups. The system groups lower in the hierarchy, can inherit attributes and users from
systemgroups higher in the hierarchy.

Whether a system group will inherit users or not, is determined by the attribute UserInherit. If
the attribute is set, the systemgroup will inherit all users from its parent usergroup.

Also the users that the parent has inherited from its parent are inherited. A systemgroup can
override an inherited user by defining the username in its own systemgroup.

A systemgroup is referred to by the 'path’'-name in the hierarchy, where the names are separated
by periods, e.g. 'ssab.hgl.sel', where ssab is the root group, and sel the lowest level in the
hierarchy.

A ProviewR system is connected to a systemgroup by stating the systemgroup in the System
object. If the systemgroup is not present in the user database, though a parent or ancestor
is, it is supposed that the systemgroup inherits users from the ancestor.

Attributes

Attribute Description
Userlnherit The systemgroup inherits users fro its parent systemgroup, also users

23.2

Users

that the parent has inherited.

A user is characterized by a username, a password and a set of privileges. A user is also
connected to a systemgroup.

The privileges define what a user is allowed to do in ProviewR. Some privileges influence
the access to make changes from ProviewR ultilities, e.g. the navigator or plc-editor, some
regards the construction of operators graphics, to control which input fields and pushbuttons
a user can influence.

A username can be connected to several system groups, but from the database point of view,
they are different users, with unique passwords and privileges. They just happen to have the
same username.

Privileges

Privilege
RtRead
RtWrite

System
Maintenance
Process
Instrument
Operatorl
Operator2
Operator3
Operatord
Operator5
Operator6
Operator7
Operator8
Operator9
Operator10
DevRead
DevPlIc
DevConfig
DevClass

Example

Description

Read access to rtdb. Default privileges for user that is not logged in
Write access to rtdb. Allows user to modify rtdb from xtt and Simulate mode
in trace

Privilege for system manager

Privilege for maintenance technician

Privilege for process technician

Privilege for instrument technician

Privilege for operator

Privilege for operator

Privilege for operator

Privilege for operator

Privilege for operator

Privilege for operator

Privilege for operator

Privilege for operator

Privilege for operator

Privilege for operator

Read access to the workbench

Write access in the plc editor

Write access in the configurator

Write access in class editor (not yet implemented)

ProviewR user database V1.0.0

ssab
hql
bl 2

bl 1

sysansv Syst em DevRead DevPl ¢ DevConfig (14680068)

skiftel

55

anna

anna

Mai nt enance DevRead (2097160)
Operatorl (64)

User |l nherit

RtWite Operator4 (514)

Qperator4 (512)
User | nherit

23.3

55 Qperatorl (64)
. carl gustav Operator8 (8192)
hst

. . . . magnus Operatorl (64)
rib User |l nherit
amanda Operator4 (512)

Look at the example above. This is a listing of a user database. To the left, you see the
system groups, and the number of periods mark their level in the hierarchy. In the same row
the attribute of the system group is written. Under each systemgroup, its users with
privileges are found. Thus the systemgroup ssab has the users sysansv, skiftel and 55.

The systemgroup sasb.hqgl.bl1 has the attribute Userlnherit, which results in that it inherits
users from its parent. Also the parent ssab.hgl has Userlnherit, i.e. ssab.hgl.bl1 also
inherits from ssab. The users of ssab.hql.bll is then, sysansv, skiftel, anna 55 and
carlgustav. Here the user 55 of sasb.hqgl.bl1 overrides the user 55 of ssab.

The systemgroup ssab.hqgl.bl2 lacks Userlnherit and has only the user anna.

The systemgroup ssab.hst.rlb has Userlnherit and inherits from its parent ssab.hst. Though,
this has not Userlnherit and has not inherited from its parent ssab. The users for
ssab.hst.rlb is then amanda and magnus.

A system with the systemgroup sandviken.hgl will be denied access because the systemgroup and
all its ancestors are missing.

A system with the systemgroup ssab.vwx.n2 will inherit users from the systemgroup ssab,
i.e. sysansv, skifel and 55. All systemgroups don't have to be present in the database, the
existence of an ancestor is enough. The ones that are not found are supposed to have the
attribute UserInherit.

Login

This sections describes how Login and access control works in different ProviewR environments.

Development environment

When starting the configurator, a login window is opened where you can state username and
password. You can also give the username and password as arguments to the workbench if you
want to avoid the login procedure. To open the configurator, you need the privilege DevRead,
and to enter edit mode, you need DevWrite. To edit in the plc editor, you need DevPlIc.

Operator environment

When the operator environment is started with an OpPlace as argument, the user is fetched from
the UserName attribute in the corresponding User object. To make modifications in the

database from the runtime navigator, the privilege RtWrite is required. In the process graphics
there are pushbuttons, sliders etc. from which you influence the database. These objects have
an access attribute, that determines which privileges are required to activate the object.

These privileges are matched to the users privileges, and if he isn't granted any of them,

he is denied access.

From the runtime navigator, you can with the login/logut command, login as another user and
thereby change your privileges.

Web access

For process graphics on the web there is a special login frame that can be added to the
start menu of the project home page. This is enabled in OpPlaceWeb.EnableLogin attribute.
The login frame checks the username and password.

It's possible to specify a specific system group for web users in the WebSystemGroup
attribute in the $Security object. The default group is common.web, which doesn't exist in
the template user database. The first existing parent group, common, is then used instead
and the users in this group has access to the web. If you want to restrict the web access,
either create the common.web group without Userlnherit, or create another group and insert
this into the $Security object. Also create proper users in the group.

Edit the user database

The user database is edited from the adminstrator or configurator. It is opened from
File/Open/UserDatabase in the menu.
See chapter Administration

You can also edit the database by commands in pwr_user,
Man kan i¢Y2ven editera databasen med kommandon i pwr_user, see pwr_user in chapter Tools.

24

Class Editor

This section describes how to create new classes in ProviewR.
There are a number of different cases when you might consider creating a new class.

Data objects

You want to store data in a data structure, for example to easy gain access to the data from
applications. You can also create data objects that describe material that passes through

a plant, where the data object contains properites for one material, e.g. length, width etc.
The material can be moved between NMps cells to indicate the position of a material in the
plant.

Plc function object

A function object used in plc programming consists of a class that defines the input and

output pins of the function object, and possible internal attributes. This type of objects

also consist of codes that are executed by the plc program. You can choose to create the code
as plc code or ¢ code.

Components

A component object reflects a component in the plant, and is often divided into two or three
different classes, a main object, a function object and a bus object, possibly also a
simulate object. The main object is placed in the plant hierarchy and contains the signals
that are connected to the component, in addition to other configuration data. A function
object, placed in a plc program, is connected to the main object and works partly with data
from its own inputs and outputs, and partly with signals and other parameters in the main
object. If the signal exchange is made via Profibus, you kan also create a special module
object that contains channel objects for the data transported on the Profibus. It is
sufficient to make one connection between the main and the module object, to connect all
signals and channels in the component. The simulation object is a function object, that is
connected to the main object, and that simulates the component when the system is run in
simulation mode.

Subclasses of components

ProviewR contains a number of basecomponent classes for valves, motors etc. These are designed

in a general fashion to cover a large number of components. Often, you create a subclass that
is adapted to a specific component, and that, for example, contains a link to a data sheet,
helptext etc. for this component. By creating a subclass of a basecomponent you inherit all
the methods and attributes from this, but you also have the possibility to increase the
functionality with more attributes and more plc-code.

Aggregates

An aggregate reflects a plant part that contains a number of components. In this case, you can
create an aggregate class that contains the different components in shape of attribute

objects. To the aggregate, there is also a function object, that calls the functions objects

for the present components. Aggregates can also contain other aggregates and give rise to
quite extensive object structures. In principle, you could build a plant is one single object,

but in practice it is appropriate to keep the object structure on a fairly low level. It is

mainly when you have several identical aggregates that you benefit by creating an aggregate
object of a plant part.

24.1 Database structure

Object

In the chapter Database structure there is a description of how objects are constructed. Now there is
reason to go a little further in the subject.

An object consists of an object head and an object body. The object head contains information
about the object name, class and relation to other objects. The object body contains the data
of the object.

Object header

An object has a name with a maximum size of 31 characters that is stored in the object header.

In the object header there is also a link to the class description of the object. The class
description contains information of how to interpret the data of the object, how it is divided
into different attributes, and the type of the attributes. You also find the methods that work
on the object.

An object is placed in a tree structure and the object head contains pointer to the closest
relatives: father, backward sibling, forward sibling and first child.

The structure of an object head are common for all types of objects.

Object body

An object can have two bodies, one body that contains the data that is needed in runtime.
It can also contain one additional body with data that only exist in the development
environment.

A body is divided into attributes that contain data of a specific type, e.g a Boolean, a
Float32 or an Int32. But an attribute can also have a more complex datatype, as an array or
aclass.

RtBody
RtBody is the body that exists in the runtime database. The body is also present in the

development environment, to make it possible to set values to different attributes in the
body.

DevBody

Some objects also have a DevBody, a body that exists only in the development database, and that
is not loaded into the runtime database. This body is mainly used by plc objects, where

devbody for example contains graphical data for the plc editor.

24.2

Class description

The layout of an object body is described in the class description of the object. Here you
also find methods and other properties of the class. The class description is built of
specific class definition objects that reside in a class volume. The class volume has a strict
syntax of how to build the class descriptions. A presentation of the the different objects
that are a part of the class description follows here.

Class volume

Class descriptions reside in a specific type of volume, a class volume. These can contain
two hierarchies, one hierarchy with class descriptions, and one with type descriptions.

$ClassHier

The class descriptions are found under the root object 'Class' of type $ClassHier. Below
the $ClassHier object, $ClassDef objects define the classes in the volume.

$ClassDef

A $ClassDef object with its descendants, describe a class. The name of the object gives the
name of the class. Below the $ClassDef, the following objects can be located

- an $0bjBodyDef object, 'RtBody', that describes the runtime body.
- an $0ObjBodyDef object, ‘DevBody’, that describes the body in the development environment.
- a Template object, i.e. an object of the current class that contains default values for
instance objects of the class.
- one or several body objects that contains data for a specific function.
- a PlcTemplate object, that can be opened by the plc editor, and that contains plc code for
the class.
- menu objects that define the popupmenu in the navigator, configurator and xtt.
- method objects that link to methods that are called for example when objects are created
or moved in the development environment.

$0ObjBodyDef

An $0bjBodyDef object can either have the name 'RtBody’, and then describe the runtime body,
or the name 'DevBody' and describe the development body. The attribute 'StructName' contains
the name of the c-struct of the class in the included file that is generated for the volume.

Below the $ObjBodyDef object, one attribute object for each attribute in the object body is
located. $Attribute objects are used for data objects, and $Input, $Intern and $Output for plc
functionobjects.

$Attribute

An $Attribute object describes an attribute in a body. The attribute can be of the following
type:

- a base type, e.g. Boolean, Float32, Time, Int16.

- a derived type, e.g. String80, Text1024, URL.

- an array of a base type or derived type.

- another class.

- an array of a class.

- an rtdb pointer, i.e. a pointer that can be interpreted by all processes.
- a private pointer, i.e. a pointer that is valid on one single process.

The type is stated in the attribute 'TypeRef'. In the attribute 'Flags' you state if the
object describes an array, pointer, class etc. If the object describes an array, the number
of elements is stated in 'Elements'.

$Input

$Input describes an input pin in a functions object in the plc program. The input can be of
type Boolean, Float32, Int32, String80, Time, DeltaTime or of datatype (pointer to Float32).
$Input gives rise to an attribute with two elements, one element of the stated type, and one
element with a pointer to the stated type. If the input is connected, the pointer points to the
connected output attribute, if the pointer is not connected it points to its first element,
where you then can specify a value for the input.

The attribute 'PgmName’ states the name of the attribute in the c-struct, and 'GraphName' the
textstring that is written in the function object at the input pin.

$Intern

Defines an intern attribute in a function object, i.e. an attribute that is neither an input
nor an output.

$Output

$Output describes an output pin in a function object. The same datatypes is valid for an
$Output as for an $Input.

$Buffer

$Buffer specifies an attribute that contains data of a certain size that only a single function
is able to interpret. The data is described by a class, but is not viewable in for example
xtt. PIcNode, that is found in all plc objects, is an example of a $Buffer. Here you find
graphic information that is only of interest for the plc editor.

Class body

A class can contain a class body object. The class body object contains data that is common
for all instances of the class. One example of a class body object is $GraphPIlcNode that
reside in all plc classes. $GraphPIcNode contains data for code generation and graphic layout
of the function object.

Menus

Menu objects are used to define popupmenus for objects in the development environment and in
the operator environment. $Menu defines a popupmenu in the development environment and
$RtMenu in the operator environment. Below the menu object, menu alternatives are defined by
$MenuButton objects, and submenues with $MenuCascade objects. The menu objects are placed
below the $ClassDef object.

The menu object calls methods, i.e. ¢ functions that are linked with the development or

operator environment. There is for the moment no possibility to do this from a project. This
has to be done from the ProviewR source code.

$Menu

$Menu objects describe popup menus in the development environment. The object name specifies

the function, the first part states the tool (Navigator/Configurator). The five last letters
state during which conditions the menu is present, dependent on which objects are selected
or pointed at.

char 1: P stands for pointed, i.e. the object at which the pointer points.
char 2: states what should be pointed at: 'o' an object, 'a'" an attribute,
'c' aclass in the palette.
char s' stands for selected, i.e. the object that is selected.
char 4: states what the sel ected object should be: 'o' an object,
"a' an attribute, 'c' a class in the palette.
char 5: states if selected and pointed should be the sanme object:
's' sanme object, 'n' different objects.

w

Example ConfiguratorPosos: 'Po' the pointer points at an object, 'so’ one object is selected,
's' the object the pointer points at and the selected object is the same object.

$RtMenu

The menu objects that describe popup menus in the operator environment.

$MenuButton

Defines a menu alternative in a popup menu.

24.3 Type description

Type descriptions, as class descriptions, reside in a class volume. They are placed in a
separate hierarchy under a $TypeHier object. Types are divided into two categories, base types
and derived types.

Base types

Base types are defined in the system volume pwrs. Example of base types are Boolean, Float32,
Int32, String, Enum and Mask.

Derived types

Derived types can be defined in any classvolume. They consist of

- arrays of base types, e.g. String80.

- enumeration types, Enum, with defined characterstrings for various values.
- bitmasks, Mask, with defined strings for various bits.

$TypeHier
Type descriptions are placed under the root object 'Type' of class $TypeHier. The $TypeHier
object has $Type and $TypeDef objects as children.

$Type
Description of a base type. This object is reserved for the system volume pwrs.

$TypeDef
Description of a derived type. The attribute 'TypeRef' contains the base type. The most
common usages are strings and texts with specific size, and enumeration types and bitmasks.

To define an enumeration type, the basetype should be $Enum. Below the $TypeDef object, texts
for different values are defined with $Value objects. When the value of an attribute of the

type is to be displayed, the text that corresponds to the value is displayed. When the

attribute is given a value, the different texts are viewed with check boxes and you select

one alternative.

To define bitmasks the basetype $Mask is used. Below the $TypeDef object, texts are defined
for different bits by $Bit objects. When the attribute is given a value, the texts are

displayed with check boxes, as for enumeration types. For bitmasks, several alternatives can
be chosen.

$Value

Defines a value in an enumeration type. The value corresponds to a text, that is viewed in
the configuration and in xtt when the attribute is opened. In the includefile for the volume,
an enum declaration is created that can be used in c-code.

$Bit

Defines a bit in a bitmask. The bit corresponds to a text that is viewed in the configurator
and in xtt when an attribute of the type is opened. In the includefile for the volume, an
enum declaration is created that can be used in c-code.

24.4 Create classes

24.4.1 Create aclass volume

The classdefinition objects reside in a classvolume, and first the classvolume has to be
registered and created.

The registration is made in the global volume list which is opened from
File/Open/GlobalVolumeList in the navigator menu. Here you create a VolumeReg object with
suitable volume name and volume identity. The volume identity for user classvolumes should
be in the intervall 0.0.2-249.1-254. Use preferably the prefix CVol in the name to indicate

that it is a class volume. Also state the current project.

i PwR Global Yolume List o -10] x|
File Edit Functions Wiew Options Tools Help

@|f|€*|ﬂﬁ|iﬁ|&|ﬂ|m|ﬁ|§<|%|%|ﬁ%|@|

& $Hier | |0 RootVolumes $Hier E
& VolumeReq = OassVolumes $Hier
CViolMerk2 YolumeReg

& » Objectdame CVolMerk?

=} Description

= p Volumeld _¥0.0.99.21

= » Project Mars4
Al]l [+

Registration of the class volume in GlobalVolumeList

Next step is to configure the classvolume in the directory volume of the project, with a
ClassVolumeConfig object. Open the Directory volume with

$ pws

and create a ClassVolumeConfig object in the left window. The object should have the same
name as the classvolume. After saving and leaving edit mode, the classvolume can be opened
by rightclicking on the ClassVolumeConfig object and activating 'Open ClassEditor...".

ﬁ PwR Navigator Directory sysansy on mars4 " 2 |I:||E|
File Edit Functions Wiew Options Tools Help

AL L E S] PN P (3 (28 FES e

& VolMerkl RootVolumeConfig < System $System &

& CWolMerk? ClassVolume Config L1 Dty Bus Config
Open Object... 8 Bus Config
Help
Help Class

Open ClassEditor.

Kl

-
Y

Configuration of th classvolume in the Directory volume

Now the Class Editor is opened, where you can create classdefinition objects. By entering
edit mode, a palette is viewed, with the class and type description classes that are used to

24.4.2

define a class or type.

Begin by creating an object of type $ClassHier on the top level. This will automatically get
the name 'Class'. Below the $ClassHier objects, $ClassDef objects are created for each class
that is to be defined.

Data classes

Data classes are the most elementary classes, and usually used to store data. The classes
constist of a RtBody with attributes.

To create a class you put a $ClassDef object below the 'Class' object.
The name of the object states the class name.

Under the $ClassDef object you create a $ObjBodyDef object that automatically gets the name
RtBody.

Under the RtBody object, an $Attribute object is created, that defines an attribute in the
class. The name of the $Attribute object states the attribute name. In the object you should
state this in the attribute object:

- the attribute type is stated in TypeRef, e.g a 32-bit integer is stated with
pwrs:Type-$Int32, a 32-bit float with pwrs:Type-$Float32 and a boolean with
pwrs:Type-$Boolean. Actually it is the full name of a type definition object that is
inserted. See the Object Reference Manual, pwrs/Types, which types are defined.

- if the attribute name contains national characters, in PgmName you have to state a name

without national characters, that is accepted by the ¢ compiler.

i PwR ClassEditor Yolume CYolMerk2, cyolmerk2.wb load -10| x|

File Edit Functions Wiew Options Tools Help

AR IEA T i PPN Y EY ()

|»]

[~ Class ~l | & Qass $ClassHier
& gattrbute (= MyDataClass $CassDef
& $AttrERef (= RtBody $O0hjBody Def
<& $Buffer & E Height $attribute
& $QassDef = » ObjectName Height
4 $QassHier = » PgmName
4 $GraphPicNode = Type 0
& $lnput = Offset 0
& $intem : = Size 0
4 $0bjBodyDef : » Hays 0
& $0bjXRef =) Elements 1
4 $0utput = Paramindex 0
“# PlcTemplate = » TypeRef pwrs:Type-$Hoat32
1 Type » Documentation
1 Menu
J Method =
K| LI R | KT [+

Definition of an attribute

When you save, an instance object of the current class with the name Template, is created under

the $ClassDef object. Here you can see the layout of the class, and also set template values for
attributes. When other instances of the class are created, they are created as a copy of the
Template object.

i PwR ClassEditor Yolume CYolMerk?2, cyolmerk2.wb_load -10] x|

File Edit Functions Wiew Options Tools Help

Q| 2| #|n|#8|w|e| o] alx|a|a]m] 6

= Class |l Oass $ClassHier -

& gattrbute [(= MyDataClass $CassDef
& $AttrXRef _ = RtBody $ObjBodyDef
& $Buffer _ 8 Height $Attribute
& $QassDef _ 8 Length $Attribute
& $CassHier _ & Width $attribute
& $GraphPlcHode 2 Template My DataClass
& $lnput ; = » ObjectName Template
& $intem 1 | = b Height 100.000000
 $0bjBodyDef : =) Length 400.000000
& $0hj¥Ref =} Width 300.000000
4 $0utput
< PlcTemplate
1 Type
1 Menu
[Method ol =
KIR I || [+

Template object with default values

Arrays
An array attribute is defined with an $Attribute object, as other attributes. Here you set
the Array bit in Flags, and state the number of elements in the array in Elements.

iid PwR ClassEditor Yolume CvolMerk2, cvolmerk2.wb_load -10] x|

File Edit Functions Wiew Options Tools Help

G|f|€ﬁ|ﬁﬁ|if'ﬁ|&|ﬁ|m| pIEN YY)

[~ Class | | E COass $ClassHier =
& $attribute (= HMyDataClass $ClassDef
& $ALrXRef [RtBody $0bjBodyDef
& $Buffer : Thicknessfrmray $Atthbute
& $CassDef = » ObjectMame Thicknessfray
<% $ClassHier = » PgmName
€ $GraphPicNode = Type 0
<& $lnput = Offset]
< $Intem = Size]
5 $0bjBodyDef = » Fags 2
<& $0bjXRef =} Pointer]
<& $0utput =} frray I
< PicTemplate =) Backup N
[Type =} Castattr W
1 Menu =) State]
1 Method =) Const]
] AllClasses = » Rtvirtual B
=) DevBodyRef N
=) Dynamic N
=) ObjidSelf N
= » HoEdit]
= Invisible]
= » RefDirect]
= » Nolnvert]
= » HNoRemove]
= » RtdbRef]
=} Private]
=} C(lass]
=) SuperClass N
= » Buffer]
=)} Howhl]
=) AlwaysWhl N
=} DisableAttr]
= » RtHide]
= » Elements 50 o
= Paramindex 1]
= p TypeRef pwrs:Type-$Hoat32
¢ Documentation
1 I3 S [T [+]

Definition of an array attribute with 50 elements

Pointers
There are two types of pointer attributes

- relative pointers that can be used by serveral processes. The value is set with the
gdh_StoreRtdbPointer() function and converted to an absolute pointer with

gdh_TranslateRtdbPointer(). Set the Pointer bit in Flags. Note! The size of the element the
pointer is pointing at should be set in Size (in bytes).

- absolute pointers. These can only be set and used by one single process. Set the Pointer
bit and the Private bit in Flags.

Attribute objects

The term attribute objects refer to attributes that are described by a data structure. The
reason to do this can be that you want to gather data under a map, or that the datastructure
is repeated, and in this case you create an attribute object array.

The data structure of the attribute is defined in a separate class. The class should only
contain a runtime body, and can not have a development body.

The attribute object is defined by an $Attribute object. In TypeRef the class describing the
datastructure is stated, and in Flags the Class bit is set.

You can also create an array, by setting the Array bit in Flags, and state the number of
elements in Elements.

Attribute objects can also contain attributes that are attribute objects. The number of levels
are limited to 20, and the total attribute name is limited to 255 characters.

An attribute in an attribute object is referred to with periods as delimiter, i.e. the

attribute Description in the attribute object Pump in object o, is referred to with the name
‘o.Pump.Description’. If Pump also is an array of pumpobjects, the name of the Description
attribute in the first pump object is 'o.Pump|[0].Description'.

iid PwR ClassEditor Yolume CvolMerk2, cvolmerk2.wb_load -10] x|

File Edit Functions Wiew Options Tools Help

G|f|€ﬁ|ﬁﬁ|if'ﬁ|&|ﬁ|m| pIEN YY)

[~ Class | | E COass $ClassHier =
& $attribute (= HMyDataClass $ClassDef
B $AtrXRef [~ RtBody $0bjBodyDef
& $Buffer . Width Table $Attribute
<3 $ClassDef = » ObjectMame VidthTable
<% $ClassHier = » PgmName
€ $GraphPicNode = Type 0
<& $lnput = Offset]
< $Intem = Size]
<8 $0bjBodyDef = » Flags 131072
<& $0bjXRef =} Pointer]
& $O0utput =) Amray 1
< PicTemplate = » Backup]
1 Type =} Castattr M
J Menu =) State]
(3 Method =} Const]
[Alldlasses = » Rtvirtual]
= » DevBodyRef 1
= » Dynamic 1
=} OhjidSelf m
= » HNoEdit m
= p Invisible 1
= » RefDirect 1
= » HNoinvert 1
= » HNoRemove 1
= » RtdbRef m
=} Private 1
= » (lass]
= p SuperClass 1
= » Buffer 1
=} HNoWhl m
= » AlwaysWhl 1
=} DisableAttr 1
= » RtHide m
=} Elements 1
= Paramindex 0
= p TypeRef pwrh:Class-Tahle
¢ Documentation
| [| [l

Definition of an attribute object of class Table

Subclass

You can also define a class as a subclass to another class. The subclass will inherit

attributes and methods from the other class, which is called the super class.

A subclass is defined by naming the first $Attribute object in the class to 'Super’,
and setting the Class and SuperClass bits in Flags. The superclass is stated in TypeRef.

All the attributes that exist in the superclass will also be present in the subclass. The
subclass can also have additional attributes that are defined as usual by $Attribute objects.

A superclass can only contain a runtime body, not a development body.

i PwR ClassEditor Yolume CYolMerkZ, cvolmerk2wb_load =10 x|

File Edit Functions Wiew Options Tools Help

AR IEA T i PPN Y EY ()

[~ Class (= Class $ClassHier -

& $Attribute [0 MySuperDataClass $CassDef

& $attrXRef (= MyDataClass $CassDef

& §Buffer (= RtBody $0hjBody Def

& $ClassDef : Sottrbute

4 $QassHier = » ObjectName Super

4 $GraphPicNode = » PgmName

& $lnput = Type 0

& $intem = Offset]

4 $0bjBodyDef = Size 0

& $ObjXRef F» HAags 393216

4 $0utput =} Pointer [

< PicTemplate =) frray B
7 Type = » Backup B
] Menu =) CastAttr B
1 Method =) State]
] AllClasses =} Const B

= j RtVirtual

= » DevBodyRef

= Dynamic

=} ObjidSelf

= } HoEdit

= p Invisihle

= p RefDirect

= } HNolnvert

= p HNoRemove

= p RtibRef

= } Private

=} (lass

= p SuperClass

=} Buffer

=} HNoWhl

= b Alwaysihl

= p DisableAttr

=} HRtHide

= p Elements 1
= Paramindex 0
= » TypeRef CVolMerk2:Class - My SuperDataClass

&= ¥ Documentation —

I I

24.4.3

2443.1

The Super attributes makes MyDataClass a subclass of MySuperDataClass

Function object classes

Function objects are used in the plc editor to program the plc program. A function object is
also described by a class, usually a bit more complex than a data class. It defines, in
addition to the data structure, the graphic layout with inputs and outputs, and the code that
is to be generated for the plc program.

The code can be defined either by c-code, or by graphical programming in the plc editor.

Function object with ¢ code

The function object class is defined by a $ClassDef object under the 'Class' object. Name
the object and activate 'Configure-CCodeFo' from the popupmenu of the object. Now are
created

- a RtBody object.

- a DevBody object with a PIcNode object that defines a buffer for graphic information in
the instances.

- a GraphPIcNode object that contains information for graphic and code generation for the
class.

Next step is to define the attributes of the class. The attributes are divided into inputs,
internal attributes and outputs.

Inputs

The input attributes define the input pins of the function object, i.e. values that are fetched
from output pins of other function objects. The inputs are defined by $Input objects that are
placed below the RtBody object.

In TypeRef the datatype of the input is stated. Valid datatypes for an input are
pwrs:Type-Float32, pwrs:Type-Int32 and pwrs:Type-String80.

In GraphName the text at the input pin in the function object is stated. Normally you use
2 - 4 characters, block letters for analog signals, lower-case for digital, and first
character upper-case for other signal types.

An input attribute in an instance object, contains both a pointer to the output it is

connected to, and a value that can be stated. You choose whether to use the input pin and
connect an output, or to set a value, with a check box (Used). If you choose not to mark Used,
the input pin is not displayed in the function object. In the Template object, you can set
default values for the input, that will be used when the input is not connected.

Intern attributes

Intern attributes are attributes that are not inputs or outputs. They can be used for
calculated values that need to be stored in the object, or values that are used to configure
the object.

All common datatypes are valid for intern attributes.

Outputs

The output attributes define the output pins of the function object, i.e. values that are stored
in the object, and can be fetched by inputs of other function objects. The outputs are defined
by $Output objects that are placed below the RtBody object.

The datatype for the output is stated in TypeRef. As for $Input, Boolean, Float32, Int32 and
String80 can be stated, and in GraphName the text for the output pin in the function object is
stated.

Note !
$Input, $Intern and $Output have to be placed in this order below RtBody: $Input first, then
$Intern and then $Output.

Default values
Defaultvalues of attributes can be set in the Template object.

If you want to state which inputs and outputs should be viewed as default, there is a mask in
the GraphPIcNode object that controls this, default_mask. Bits in default_mask[0] correspond

to input attributes, and bits in default_mask[1] to output attributes. If the bit that
corresponds to a specific input or output is set, this will be viewed as default.

i PwR ClassEditor Yolume CYolMerk2, cvolmerk2.wb_load =10l =
File Edit Functions Wiew Options Tools Help
AN RASY (I PN P (SN (SN [EY (<)
= Class | |7 dass $ClassH|er -
® shttrinute
& $attrERef (= RtBody $0hjBody Def
& $Buffer & Il Sinput
& $ClassDef & In2 Sinput
& $ClassHier < Factor SInterm
<& $GraphPicHode E: Out $0utput
<& $input = » ObjectMame Out
<& Sintem = p PgmHName
4 $0bjBodyDef = Type 0
& $ObjXRef = Offset 0
& $0utput = Size]
<& PlcTemplate Ef » HFags]
[Type = p Elements 1
] Menu = Paramindex]
] Method = p TypeRef pwrs:Type-$Hoat32
] Alllasses = p GraphName ouT
= p InputType 0
= p HiNafnnot]
= p HiHaCond]
= p HiNaSegments 0
= p Debfnnot 0
= p ConPointNr 0
¢ Documentation
(= DevBody $0hjBody Def
< PlcHode $Buffer
= <% GraphPicNode $GraphPicNode =

Function object with two inputs, one intern attribute, and one output

My CCodeFo
=1 IM1 ouTp=
i 10

My CCodeFol

The function object for the class

Code

When the classvolume is built, an h-file with a ¢ struct for the class is generated. The name
of the struct is

pw _sC ass_' Struct Nane'

where StructName is fetched from the StructName attribute in RtBody. As default, it is the
same as the class name, but, for example if the classname contains national characters,

another name can be specified.

Below an example of the struct for the class MyFo is viewed. MyFo contains two inputs In1 and
In2, one intern attribute Factor, and an output Out, all of type Float32.

typedef struct {

pw _t Fl oat 32 *I nlP;
pw _t Fl oat 32 Ini;
pw _t Fl oat 32 *| n2p;
pw _t Fl oat 32 I n2;
pw _t Fl oat 32 Fact or;
pw _t Fl oat 32 Qut;

} pwr_sd ass_MFo;

Note that each input consist of two elements, a pointer with the suffix 'P', and an element
that can be given a value if the input is not connected. If the input is connected, the
pointer element will point to the output it is connected to, otherwise it will point to the
value element. Therefore, in the c-code, you should use the pointer element to fetch the
value of the input.

The code for the class is a function with this appearance

void 'Struct Name' _exec(plc_sThread *tp,
pw _sCl ass_' Struct Nane' *o0) {

}

In the code, data is fetched from the inputs, and calculated values are put on the outputs.
Also intern attributes can be used to store information to the next scan, or to fetch
configuration data.

In the code example below In1 and In2 are inputs, Factor is an intern attribute and Out an
output.

0->Qut = o->Factor * (*o->InlP + *o0->In2P);
Note that the pointer element for the inputs In1 and In2 are used in the code.

You should also add prototype declaration of the exec function in ra_plc_user.h

void 'Struct Name' exec(plc_sThread *tp,
pw _sC ass_' Struct Nane' *0);

The module of the c-code is compiled and linked with the plc program. This requires a link

file to be placed on the directory $pwrp_exe. The file is named

plc_'nodename’ 'busnumber’_'plcname’.opt, e.g. plc_mynode 0999 plc.opt. The content of the
file is input to the linker, Id, and here you add the modules of the plc-code. In the example
below these modules are placed in the archive $pwrp_lib/libpwrp.a

$pwr_obj/rt_io_user.o -lpwp -l pw_rt -Ipw _usbio_dumy -Ipw _usb_dumy -I|pw _pnak_dul
-l pw _cifx_dumy -1 pw _nodave_dumy -1 pw _epl _dumry

24.43.2 Function object with plc code

A function object, where the code is written in plc-code in the plc editor, is defined in a
similar way as the function object with c-code above.

The functionobject class is defined by a $ClassDef object below the 'Class' object. Name the
object and activate Configure-Fo in the popupmenu for the object. Now, in addition to the
objects created for the c-code functionobject, also a Code object of class PlcTemplate is
created. This object can be opened with the plc editor, and define the code for the class.

Inputs, intern attributes and outputs in the function object are defined in the same way as for
the c-code function object, by $Input, $Intern and $Output attributes.

i PwR ClassEditor Yolume CYolMerk?2, cvolmerk2.whb_load - 10| x|
File Edit Functions Wiew Options Tools Help
= ARIEE =1 EAC | P PSS EY S e
= Class 2|l | dass $ClassHier -
& sattrbute = MyFo $ClassDef
& $attrsRef = RtBody $0hjBody Def
< $Buffer & Inl $Input
< $ClassDef & In2 $Input
< $ClassHier £ Factor $intem
$GraphPicHode : & Out $Output
& $Input : = DevBody $0hjBody Def
< $intem i < PlcHode $Buffer
% $0bjBodyDef <% GraphPicNode %GraphPlcHode
<& $0bjXRef & Code PicTemplate
“# $Output
*@ HcTempIate 1]

Definition of a function object with plc code.

Code

By activating 'Open Program..." in the popupmenu of the Code object, the plc editor is opened.
Here the code is written with function object programming. The code is created similar to an
ordinary program, but here you also have to fetch values from the input and intern attribute,
and to set values to the outputs.

Values of inputs, intern attributes, and also outputs, are fetched in the code with GetDp,
Getlp, GetAp or GetSp objects. You connect the objects to attributes in the class by
selecting the attribute in the Template object for the class, and activate the 'Connect'
method for the Get object. A symbolic reference $PIcFo is put into the Get object. This will
later be exchanged to a reference to the current instance, when the code for the instance is
compiled.

Calculated values are stored in outputs or intern attributes with StoDp, Stolp etc. These are
connected to attributes in the same way as the inputs, by selecting the attributes in the
Template object and activating '‘Connect'.

ﬁ dkik Elass—MyFD—EﬂdE

File Edit Search Wiew Functions Mode Help

=10/ %]

G2|=ea|a]a]] @]

$PicFo.Inl Add kul StoAp | $PicFo.Out

£ |E

$PlcFo.In2 Add0 f—— Mull

Ap | $PcFo.Factor

24.4.4

Example of plc code for a function object

The template code in the Code object should not be compiled or built. When an instance object
is compiled for the first time, the template code is copied to the instance.

When the template code is changed, the code of the instances will be updated the next time
they are compiled (the volume containing the instances, has to be updated with UpdateClasses
first).

I/0 classes

1/0 objects are the objects handled by the 1/0-handling in ProviewR. They are divided in Agent,
Rack, Card and Channel objects. When adapting new I/O systems to ProviewR, you have to create
new classes of types Agent, Rack and Card. I/O objects are defined by a $ClassDef object

where the loAgent, loRack or loCard bit is set in Flags.

24.4.5

24451

A more detailed description of how to create 1/0 objects is found in Guide to I/O System.

Components

A component is an object, or a number of objects, that handles a component in the plant. It
could be a valve, a motor, a frequency converter etc. The idea behind the component concept
is that by creating one object (or a number of objects) you get all the functionality

required to control the component: an object containing data and signals, a function object
with code to control the component, an object graph for HMI, a simulation object, I/O objects
to configure bus communication etc.

A component can include the following parts
- a main object

- a function object

- a simulation object

- one or more I/O bus objects

- object graph for the main object

- object graph for the simulation object

- graphic symbol for the main object

Main object

The main object contains all data needed to configure and make calculations. The object is
placed in the plant hierarchy, as an individual object or as a part of an aggregate.

Often the class BaseComponent:Component is used as super class to a component class. It
contains a number of attributes as Description, Specification, DataSheet etc.

All the input and output signals that are attached to the component should be placed in the
main object. Di, li, Ai, Do, lo, Ao or Co object are inserted as attribute objects. When

creating instances of the component, the signals have to be connected to channel objects. For
profibus, for example, you can create a module object, that contains the channels, and
preconnect the signals in the main object to these channels. For each instance, you then

don't have to connect every channel individually, but can make a single connection between
main object and module object.

Special attributes

PlcConnect

If there is any code that is to be created by the plc program, you create a function object
for the class. This has to be connected to the main object, and this connection is stored in
an attribute with name 'PlcConnect’ of type pwrs:Type-$AttrRef.

SimConnect
If there is a simulation object, this is connected to the main object by a 'SimConnect'
attribute of type pwrs:Type-AttrRef.

loConnect
If there is a I/O module object, this is connected with an 'loConnect' attribute of type
pwrs:Type-AttrRef. The attribute is handled by the loConnect method.

loStatus

If you want to fetch the status from the 1/0O-module object, you create the attribute
'loStatus' of type pwrs:Type-$Status, and set the Pointer bit in Flags. You also have
to set 4 in Size (for relative pointers the size of what the pointer is pointing at, has

to specified in Size).

The attribute will be assigned a pointer to the Status attribute of the 1/O-module in runtime
when the I/O handling is initialized. The Status attribute is of type Status and can for example
be displayed in an object graph with the dynamic type StatusColor. If you want to use loStatus
in the plc code for the object, you have to consider that the attribute is a pointer and

fetch the value with GetlpPtr.

SequenceReset

It is possible to use Grafcet sequences in a component. One difference from an ordinary
sequence are that the reset object should be defined as an attribute of class Dv in the
main object, with the name 'SequenceReset'. SubSteps can not be used in the sequence.

GraphConfiguration
GraphConfiguration is of type Enum and used to decide which object graph is to be opened
for the current instance. It is used by the '‘ConfigureComponent' method (see below).

DisableAttr

The DisableAttr function makes it possible to disable an attribute in an instance. If an
attribute is disabled, it will not be viewed in the navigator or object editor. If the
disabled attribute is a signal, it will be ignored by the I/O handling.

The disable function is used for components that can exist in different configurations.

A solenoid valve for example, can have one switch indicating that the valve is open, and one
indicating that the valve is closed. Totally there are four configurations for the solenoid
valve:

- no switches

- switch open

- switch closed

- both switch open and switch closed

You could create four different solenoid valve classes, but a problem will come up when
building aggregates of the valve objects. An aggregate, containing a valve object also has
to exist in four variations, and if the aggregate contains two valve objects, there has to be
16 variations. By using the DisableAttr function on the switch attributes we can create a
solenoid valve class that covers all four configurations, and also can be used in aggregate
classes.

DisableAttr for an attribute is configured in the following way.

- the DisableAttr bit in Flags is set for the attribute.

- before the attribute, an attribute of type pwrs:Type-$DisableAttr is placed, with the same
name as the attribute, but with the prefix '‘Disable’. The Invisible bit in Flags should be
set for the DisableAttr attribute.

Example

In the solenoid valve class above, the switch closed is represented by the attribute
SwitchClosed that is a digital signal of type pwrb:Class-Di. Immediately above the attribute
an attribute with name 'DisableSwitchClosed' of type pwrs:Type-$DisableAttr is placed. For
this attribute the Invisible bit in Flags is set, and for the SwitchClosed attribute the
DisableAttr bit in Flags is set.

&8 PwR ClassEditor Yolume cclassvolume, sysansy on mars

File Edit Functions Wiew Options Tools Help

=10l x|

G|f|€ﬁ|ﬁﬁ|if'ﬁ|&|ﬁ|m| x|g|2a 0|

[~ Class
& $Attribute
& $AttrERef
<3 $Buffer
<3 $ClassDef
<% $ClassHier
< $GraphPicNode
<& $lnput
< $Intem
5 $0bjBodyDef
 $ObjXRef
<& $0utput
< PicTemplate
1 Type
"1 Menu
"1 Method
] allClasses

[~ Mvalve $Uassbet
[RtBody $0hjBody Def
[$#I DisableSwitchClosed $Attribute
= » ObjectHame DisableSwitchClosed
=} PgmName
= Type 0
= Offset 1]
= Size 1]
Flags 2048
= p Elements 1
= Paraminde:x 1]

= b TypeRef
SwitchClosed

= » ObjectHame
=} PgmName
= Type
= Offset
= Size
= » Fags

= p Pointer
=} frray

= » Backup

= p Castittr
= p Slate

= p Const

= p RiVirtual
= p DevBodyRef
= p Dynamic
=} ObjidSelf
= p HNoEdit

= p Invisible
= » RefDirect
= p HNolnvert
= » NoRemove
= p RidbRef
= p Private

= p C(lass

= p SuperClass
= p Buffer

= » NoWhl

= b Alvraysihl
= p Disablefttr
= p HiHide

= p Newhttribute
= p Elements

= Paraminde:x
= p TypeRef

SwitchClosed

4325376

0 1 O O Y

1
1]
pwrh:Class-Di

Attribute with disable function

Cast

Component classes are often built in a relatively flexible way to minimize the number of
variants. Often you create a baseclass that makes use of the DisableAttr function to be able

to cover a number of different configurations. In the example above a solenoid valve class

can cover four different configurations by setting DisableAttr on the switch signals. You also
create subclasses that are adapted to specific valves. For example, a Durholt 100.103 doesn't
contain any switches, and an subclass is created where both switches are disabled in the
Template object. You also set other adaptations in the Template object as a link to a datasheet.
The result is a subclass that can be used for Durholt valves without any configurations for

each instance.

If we now build a general aggregate, containing a solenoid valve, and want to be able to use

the subclasses that exist for the solenoid valve, we use the Cast function. With the Cast
function, an attribute object can be casted as a subclass of the original class, given that

the subclass has the same size. When an attribute object is casted, default values, and thus
configurations, are fetched from the subclass. Also classname and methods are fetched from the
subclass.

The cast function for an attribute is entered in the following way:

- The CastAttr bit in Flags is set for the attribute.

- Before the attribute, an attribute of type pwrs:Type-$Castld is placed with the same name
as the attribute, but with the prefix ‘Cast'. The Invisible bit in Flags should be set for
the cast attribute.

i PwR ClassEditor ¥Yolume BaseComponent
File Edit

Functions Aiew Options

, basecomponent.wb

=10l x|

Tools Help

G|f|€ﬁ|ﬁﬁ|if'ﬁ|&|ﬁ|m| x|alala el

HUN lnmevounier dunpue

O Cass = rem

[81 CastContactor $httribute

CJ Type

"1 Menu

"] Method
] allClasses

=)

»

5

Contactor

Invizihla

ObjectHame CastContactor

PymHame
Type

Offset

Size

Flags

Elements
Paramindex
TypeRef
Documentation

pwrs:Type-$Castld

ObjectHame Contactor

PymHame

Type

Offset

Size

Flags
Pointer
Array
Backup
CastAttr
State
Const
Rivirtual
DevBodyRef
Dynamic
Obijid Self
HoEdit

1]
1]
1]
1

31080

Contactor with cast attribute

Casting of an instance is executed by activating the ‘Cast' method in the popupmenu for the

attribute. A list with the baseclass and all
cast class can be selected.

subclasses are displayed, where a suitable

If an attribute has both cast and disable attributes, the cast attribute should be placed

before the disable attribute.

i PwR Navigator Yolume YolMerkl, sysansy on mars -10| x|

File Edit Functions Wiew Options Tools Help

FAE L ETFE N EIE R
< BaseOverloadl[+] [& Ml $PlantHier o]
3 BaseOveroadl| @: Motor BaseMotoraggr
BasePosit3ens = » ObjectMame Motor
% BasePosit3ens = » Description
BasePressure!| = p Specification
< BasePump = » HelpTopic
<5 BaseSafetySu | =} Data'_Shget
<% BaseSafetySw, = p CircuitDiagram
<8 BaseSwitch =} Hote
<&t RunTime Count:| = » Photo _
48 RunTimeCount | & » GraphConfiguration ChCoOrSs 184 Casting Wikt
<% BasePropValve = Ready 0
<% BasePropValve = Extinterock 0
© BaseDirvalve — :.u{;:alMu_de g BaselContactor
<& BaseDirValveF| = IndWaming
& BaseMotorAgy = IndError 0 Omron_Contactor |7KN
% BaseMotorAgy 5 » RunTimeCounter RunTimeCount ABE Contactor A
@ BaseMotorAgy (G » Contactor BaseComactor y contactor pkz
<5 BaseFanAggr (@ » CrcuitBreaker BaseCircuitBrea
& BasePumpaigg d » SafetySwitch Base3afetySwi
<% BaseMotorincr| @ » OveroadRelay BaseOveroadRi
< BaseMotorincy B » Mode CompModeD 4]
<% BaseMotorincr d » Motor BaseMotor
<8 CompOnOTffBul = p SupDisabled 0 Ok _[
@& CompOnOTfBul -] ~=» PicConnect i

Casting of an instance

Methods

Method ConfigureComponent

Often there are several variants of a component. In the example with the solenoid valve above,
four different variants were found dependent on the configuration of switches. To simplify

the users configuration of the component, you can define the method 'ConfigureComponent'.

The ConfigureComponent method makes it possible to set Disable to one or a number of attributes
from a menu alternative in the popupmenu, and to select an object graph that is adapted
to the current configuration.

Meny

The menu alternatives for ConfigureComponent are defined by menu objects. Under the $ClassDef
object, a $Menu object with name 'ConfiguratorPosos' is placed, which makes the menu visible

in edit mode when the object is pointed at and selected. Below this, yet another $Menu object

is placed with the name 'Pointed’, and below this a $MenuCascade object with the name
'‘ConfigureComponent’. The attribute ButtonName is set to ConfigureComponent for this object.
Below this, finally one $MenuButton object is placed for each configuration alternative.

The name is preferably set to the name of the configuration alternative, and is also put into

the attribute ButtonName. In the attribute MethodName '$Object-ConfigureComponent' is inserted
and in the attribute FilterName '$Object-ConfigureComponentFilter'. You should also fill in
arguments to the method in MethodArguments. MethodArguments[0] contains a bitmask, that decide
which attributes that will be disabled in the current menu alternative. Each attribute, that is

possible to disable is represented by a bit, and bit order corresponds to the attribute order

in the object. MethodArguments[1] contains the graphic representation, see below.

If we look at the solenoid valve, we have two attributes that can be disabled, SwitchClosed
and SwitchOpen. In the bitmask in MethodArguments[0] SwitchClosed corresponds to the first
bit and SwitchOpen to the second, i.e. if the first bit is set, SwitchClosed will be disabled,

and if the second bit is set, SwitchOpen is disabled. The four configuration alternatives
TwoSwitches, SwitchClosed, SwitchOpen and NoSwitches correspond to the following masks

TwoSwi t ches 0 (both SwitchOpen and SwitchC osed are present)
SwitchC osed 2 (SwitchOpen is disabl ed)

Swi t chOpen 1 (Switchd osed is disabl ed)

NoSwi t ches 3 (both SwitchOpen and SwitchC osed are disabl ed)

il PwR ClassEditor Yolume claesclassvolume, sysansy on mars] =] 4
File Edit Functions Wiew Options Tools Help
Gs|e|a@nemlalxalaael
Do e] | T

& $AttrxRef 0 RiBody $0bjBody Def

& $Buffer = Cunt_'lguraturPusus $kenu

& $ClassDef = Pointed $kenu

& $ClassHier = Cunﬁgure_ﬁumpunent $MenuCascade

& $GraphPichode < TwoSwitches $MenuButton

& $input <& SwitchClosed $MenuButton

& $intem @_ SwitchOpen $MenuButton

& $0bjBodyDef [€#] HoSwilches $MenuButton

& $OhjxRef = » ObjectHame HoSwitches

@ $Output = » ButtonMame MoSwitches

& PicTemplate = p MethodHame $0hject- Configure Component
B Type CE» Methodfrguments

& $Bit = } MethodArguments[0] 3

@ $TypeDef = } MethodArguments[l] 3

@ $TypeHier = } MethodArguments[2]

& $Value =} MethodArguments[3]
[Menu =} MethodArguments[4]
7 Method = » FilterHame $0bject- Configure ComponentFilter
] AllCiasses CE» Filterirguments

& Template MValve

dl [+] dl]

Configuration of component attributes
If you disable an attribute that is a component that contains signals, the signals in the
component also have to be disabled. The I/O handling only looks at if the individual signal is
disabled, and is not looking upwards on higher levels. To disable a signal in a component
attribute, you add a comma and the name of the component followed by the disable mask that

is valid for the component to MethodArguments[0]. For example in an object where the
components Contactor and CircuitBreaker are disabled MethodArguments[0] can contain

3, Contactor 1, CircuitBreaker 1

where '3' is the Disable mask of the object (that disables the attributes Contactor and
CircuitBreaker), and 'Contactor 1' results in disabling a signal attribute in Contactor, and
'CircuitBreaker 1' disables a signal in CircuitBreaker.

There is also another syntax with paranthesis that allows more than two levels. In this example
the object above, Motor, is a part of a larger aggregate.

(5 (Motor 3 (Contactor 1, CircuitBreaker 1), Tenp 1))
Component attributes with individual configuration

When the ConfigureComponent method is activated, Disable is removed from all component
attributes, to reset any previous configuration. Sometimes there are component attributes

that are not a part of the object configuration, but have to be configured individually. These
components should not be reset by the ConfigureComponent method, and have to be stated in
MethodArguments[2] with comma as delimiter. In the following example, the component attributes
Motor and Contactor should be configured by their own ConfigureComponent methods, and not
affected by the ConfigureComponent method of the object. In MethodArguments[2] is stated

Mot or, Cont act or

Object graph

When drawing the object graph for the component, you have to consider the different
configurations. If the differences between the configurations are small, you can use the
Invisible dynamic. If the differences are greater, it might be more convenient to draw

separate graphs for the configurations. Then you insert an attribute in the main object with

the name GraphConfiguration of type Enum. It is common to create a specific enumeration type
with the configuration alternatives. If GraphConfiguration is 0 the standard graph is used,

else the value in GraphConfiguration is set as suffix to the graphname.

In the example with the solenoid valve, MValve, we create an enum type, MValveGCEnum, and
define the values

TwoSwi tches O
Swi tchCd osed 1
Swi t chQpen 2
NoSwi t ches 3

For the TwoSwitches configuration, with value 0, we draw an object graph with name mvalve.pwg.
For SwitchClosed, with value 1, we name the graph mvalvel.pwg, for SwichOpen mvalve2.pwg and
for NoSwitches mvalve3.pwg.

We also state the enumeration value in MethodArguments[1] in the $MenuButton object for the
current configuration. This will imply that GraphConfiguration will be set to this value
when the current menu alternative is activated.

24452

i PwR ClassEditor Yolume claesclassyolume, sysansy un'l'__

File Edit

Functions \iew Options Tools Help

=10l x|

G|f|€ﬁ|ﬁﬁ|if'ﬁ|&|ﬁ|m| pIEN YY)

[Class 2l | & Type $TypeH|er
01 Type
] Menu E TwoSwitches $Value
(3 Method = » ObjectName TwoSwitches
[Alldlasses =)} Text TwoSwitches
= p PgmHame Two3Switches
=} Value]
hE SwitchClosed $Value
= » Objectdame SwitchClosed
=} Text SwitchClosed
=} PygmHame SwitchClosed
=} Value 1
<#i SwitchOpen $Value
F» ObjectHame SwitchOpen
= b Text switchOpen
= p PgmHame SwitchOpen
=} Value Z
<% MoSwitches $Value
= » Objectdame HoSwitches
=} Text MoSwitches
=} PygmHame Mo3witches
B =} Value 3

I o T

Enumeration type for GraphConfiguration

Functionobject

The functionobject is the interface of the component in the plc program. It defines inputs and
outputs that can be connected to other functionobjects in the plc editor. Unlike an ordinary
functionobject the code is also working with data in the main object.

The code can be written in plc-code or c-code.

plc-code

If you want to keep the code of the function object visible, and there is need of running
PlcTrace in the code, it is suitable to use a functionobject with plc-code.

Create a $ClassDef object and name the object. Preferably use the same name as for the main
object followed by the suffix 'Fo', e.g. MyComponentFo. Then activate Configure-ConnectedFo in

the popupmenu.

Under RtBody a PlcConnect attribute of type AttrRef is created, that will contain a link to
the main object, when an instance is connected in the plc-editor.

Configure inputs and outputs with $Input and $Output objects below the RtBody object. You

can also create $Intern objects, but this type of data is usually stored in the main object.
Note that the order of attribute objects should be $Input, $Intern, $Output.

The code is created by opening the plc editor for the Code object. In the code, you fetch
values from an input, by selecting the input attribute in the template object for the
functionobject in the navigator, and activate the connect function. Output is stored in a

similar way. When data should be fetched or stored in the main object, you select the attribute
in the template object of the main object. References to the function object are viewed in the
plc-code with the symbol $PIcFo, and references to the main object with the symbol $PIcMain.

If the object contains components, the function object of these components are put in the
plc-code.

If you have DisableAttr on signals or other attributes, this has to be handled with conditional
execution in the code. A signal that is disabled must not be read or written to in the code.

You use the object Disabled under the map Other, to evaluate if an attribute is disabled or not.
This can then be connected to a CArea object that handles the conditional execution.

Check switch closed if configured
[Disabled | $PicMain SwitchClosed |- -] cArea | HasswitchClosed |

Do | $PlcMain.Crder I_

Di | $PleMain SwitchClosed I——

li'JI'"J

And
And2 J
- And [~

=1 And3

Condition execution with Disabled and CArea

c-code
A function object with c-code is configured with a $ClassDef object. Name the object and then
activate Configure-ConnectedCCodeFo in the popupmenu.

Below RtBody, two attributes are created, PlcConnect of type AttrRef and PlcConnectP that is a
pointer. In PlcConnect, the reference to the main object is stored, when an instance is
connected in the plc editor. When the plc program is initialized in runtime, you fetch, with

help of the reference, a pointer to the main object. The pointer is stored in PlcConnectP.

This is done in the c code, that is separated in an init function that is executed at initialization

of the plc program, and an exec function that is executed at every scan. For the function object
MyComponentFo with the input In1 and In2, and the output Out2, the code is

voi d MyConponent Fo_init(pw _sC ass_MyConponent Fo *0)

{
pw _tDid dlid;
pw _t Status sts;
sts = gdh_DLRef Obj ectInfoAttrref(&o->PlcConnect, (void **)&o->Pl cConnectP, &dlid);
if (EVEN(sts))
0->Pl cConnect P = O;
}
voi d MyConponent Fo_exec(plc_sThread *tp,

pw _sCl ass_MyConponent Fo *0)
{

24,453

pw _sC ass_MyConponent *co = (pw_sC ass_M/Conponent *) o->Pl cConnectP;

if ('co)
return;

0->Qut = co->Value = co->Factor * (*0->InlP + *0->In2P);

Simulation object

A simulation object is used to simulate the process, both at normal conditions and when
different errors occurs. The simulation object reads the output signals (Do, Ao, 10) in the main
object, and sets values to the input signals (Di, Ai, li, Co). The object is a functionobject

that can contain input and output attributes, but these are usually missing, and the object is
working with data in the main object, and with internal attributes that configures the
simulation and triggers various error conditions. The simulation object often has an object
graph that is opened by the Simulate method of the main object.

A simulation object is connected to the main object by a connect method, in the same way as an
ordinary function object. But the simulation class has another connect method than the Fo class.
The main object should contain the attribute 'SimConnect' of type pwrs: Type-$AttrRef, into
which the connection method will store the identity for the simulation object when a main
instance object and a simulation instance object are connected.

A simulation class is created in the same way as a functionobject class, and can be written in
c of plc-code. The class is preferably named with the same name as the main class, followed by the
suffix 'Sim'.

Create a $ClassDef object and name the object. Then activate the Configure-ConnectedFo or
Configure-ConnectedCCodeFo. Add any $Input, $Intern and $Output attributes, and write the code
in plc or c-code. Change the connect method in GraphPIlcNode to 26.

The object graph for simulation objects are often drawn with darkblue background and white text
to easily be parted from other object graphs. Note that attributes in the main object can be
referenced by the '&' notation, e.g. &($object.PlcConnect).IndError##Boolean.

i1 SIM-PK1-O¥RIGT-Simulering-W-CSub0-W-KR¥1 -10] x|

File Methods Help
Y =]

Simulate BaseCWValve

Manual control Manual value
switchOpen

SwitchClosed

]
|_
Position m

100 &0 80 70 Bl

Force difference error

Object graph for a simulation object

24.45.4 1/O-module object

A main object for a component can contain signal objects of type Ai, Ai, li, Ao, Do, lo and

Co. The signals of an instance have to be connected to channel objects in the node hierarchy.

In, for example, Profibus you can create module objects, where the channels are adapted to the
dataarea that is received and sent on the bus. If the signals in a component are handled by

a module object, you can store symbolic references to the channel objects in the signal

objects. Then you only have to do one loConnection between the component and the module object,
you don't have to connect each signal separately. The symbolic references are stored in the
template object of the template object of component, by connecting the signals in the template
object to the channels in the template object of the I/O module. The symbolic references are

of type $loConnect, and are converted to real references at initialization of the 1/O handling

in runtime.
i PwR ClassEditor Yolume cclassvolume, sysansy on mars e]
File Edit Functions Wiew Options Tools Help
G|f|€ﬁ|ﬁﬁ|ﬁ'a|&|ﬂ|m| slxjajalmle|
= Class I~ Mvave Fuassuver -
& $httribute m (7 RtBody $ObjBodyDef =
5 $AttPYRef 3§ Template Mvalve
& $Buffer F» ObjectHame Template
<8 $ClassDef b GraphConfiguration TwoSwitches
& $ClassHier 8 » SwitchClosed Di
@ $GraphPicNode 8 » SwitchOpen Di
& $input [5 » Order Do ST
& $intem [Mvalve_Module $CassDef FI?E” Ject...
@ $0bjBodyDef (7 RtBody $0bjBodyDef | C :.:.et...
& $ObjXRef i Template MValve_Module | Diszble
& $Ooutput iy Dhjecmsiume Template | Help
& PicTemplate = » Descriplion Help Class
1 Type = } Specification
[Menu Tk MsiRclame Connect Graph
"] Method = } Process 1 B L
] AllClasses -[» ThreadObject _00.0,0.0:0 - ""EEE TR
=} Status
= p DataSheet
0 » Ch3wOpen ChanDi
B ChSwllosed ChanDi

A signal is connected to a channel in an I/O module.

il PwR ClassEditor Yolume cclassyvolume, sysansy on mars

File Edit

Functions Mew Options Tools

Help

=10l x|

@\flﬁlﬁﬁlifﬂl&lﬁlm\ﬂ|§<|%|%lﬁ|©|

[Class 7 Myvave EIWETATTE | ﬂ
< ghttribute B [0 RiBody $0bjBodyDef
& $AttrXRef @1 Template Mvalve
4 $Buffer = » Ohjectame Template
% $0assDef » GraphConfiguration TwoSwitches
<3 $ClassHier BE: SwitchClosed Di
& $GraphPicNode = » _Description
3 §Input Sig ChanCon $loConnect:CClassVolume - Class - Myalve Module.ChSvwOpen
<8 $Intemn = } fhitialvalue 0
<& $0bjBodyDef = SigValue 0]
< $0hjXRef —+=p DefGraph
& $0utput —~=p DefTrend
<# PlcTemplate = p HelpTopic
] Type =} DataSheet
J Menu =} CircuitDiagram
7 Method = p Hote
[AllClasses = » FilterType Ho =
[4] [v] [4] o
Symbolic reference to channel object
24455 Object graph

Object graph has the same name as the component, but with lower case. For classes in the ProviewR

base system you add the prefix '‘pwr_c '

. The graphs are edited as normal in Ge. In the dynamic

you exchange the object name with '$object’. Object graph for objects in the base system are
drawn with the following guidelines.

Menu

There should be a menu with the pulldown menus File, Methods, Signals and Help.

File should have the entries

Print
Cl ose

Conmrand
Cl oseG aph

Methods should have the entries

Hel p
Not e
Trend
Fast
Hel p

Dat aSheet

I nvisible
Command
I nvisible
Comand
I nvisible
Command
I nvisible
Command
I nvisible
Comand
I nvisible
Command

print graph/class/inst=%object

$cnd(check net hod/ met hod="Hel p"/ obj ect =$obj ect)
cal | met hod/ met hod="Hel p"/ obj ect =$obj ect
$cnd(check net hod/ net hod="Not e"/ obj ect =$obj ect)
cal | net hod/ net hod="Not e"/ obj ect =$obj ect
$cnd(check net hod/ net hod="Trend"/ obj ect =$obj ect)
cal | met hod/ net hod="Trend"/ obj ect =$obj ect

$cnmd(check net hod/ met hod="Fast "/ obj ect =$obj ect)
cal | met hod/ met hod="Fast "/ obj ect =$obj ect
$cnd(check net hod/ net hod="Phot 0"/ obj ect =$obj ect)
cal | met hod/ net hod="Phot 0"/ obj ect =$obj ect
$cnd(check net hod/ net hod="Dat aSheet "/ obj ect =$obj ect)
cal |l met hod/ net hod="Dat aSheet "/ obj ect =$obj ect

Hi st Event... I nvi si bl e $cnmd(check net hod/ met hod="Hi st Event..."/object=$%0bj ect)
Conmand call nethod/ nmet hod="Hi st Event..."/object=%0bject

Bl ock Events... Invisible $cnd(check nethod/ nethod="Bl ock Events..."/object=%0bj ect
Command call method/ met hod="Bl ock Events..."/object=%0bject

Rt Navi gat or Invisible $cnd(check nethod/ net hod="Rt Navi gat or "/ obj ect =$obj ect)
Conmand cal |l method/ net hod="Rt Navi gat or "/ obj ect =$obj ect

Open oj ect I nvi si bl e $cmd(check net hod/ met hod="Cpen bj ect"/ obj ect =$obj ect)
Conmand call nethod/ met hod="Qpen Obj ect"/ obj ect =$obj ect

Open Pl c Invisible $cnd(check nethod/ met hod="CQpen Pl c"/obj ect =$0bj ect)
Command cal |l method/ met hod="COpen Pl c"/ obj ect =$obj ect

Circuit Diagram Invisible $cnd(check nethod/ nethod="Circuit Di agran'/object=%obj ect
Conmand call method/ nethod="Ci rcuit D agrani/object=%0bject

Hel pd ass I nvi si bl e $cmd(check net hod/ met hod="Hel pCl ass"/ obj ect =$obj ect)
Conmand call net hod/ net hod="Hel pd ass"/ obj ect =$obj ect

Signals should contain all signals in the component and open the object graph for each signal.

Example

Swi t chQpen Di

Command

Swi t chC osed Di Comand

Order Do

Comand

open graph/class /inst=%object.Sw tchQpen
open graph/class /inst=%object. Swi tchC osed
open graph/class /inst=%object. O der

The Help menu should contain Help and HelpClass

Hel p Conmand cal |l et hod/ net hod="Hel p"/ obj ect =$obj ect
Hel pd ass Conmrand cal |l method/ net hod="Hel pd ass"/ obj ect =$obj ect
Toolbar

The toolbar contains buttons for the methods. The dynamics are the same as in the methods menu
above. To the right, there is also a button for the object graph of the simulate object. This
has the dynamic

Invisible $cnd(check nethod/ met hod="Si nul at "/ obj ect =$0bj ect)
Command cal |l et hod/ met hod="Si nul at "/ obj ect =$obj ect

Below the method buttons there are two textfields that display the Description and Specification
attributes in the component with the dynamic

Descri ption Val ue. Attri bute $object. Descripti on##String80
Val ue. For mat %s

Speci fication Val ue. Attri bute $object. Specification##String80
Val ue. For mat %

On the lowest row in the graph, any Notes message are viewed, with a button to change or remove
the message.

Not es button I nvi sible $obj ect . Not e##St ri ng80
Command cal |l et hod/ met hod="Not e"/ obj ect =$obj ect
Val ue. Attri bute $obj ect. Not e##Stri ng80

Val ue. For mat s

Not es t ext

24.45.6

"x YWX-PK1-TRATT-BTY1-Magnetventil
File Methods

Object graph

Graphic symbol

The graphic symbol is drawn in Ge and given the default dynamic HostObject. In the host object
dynamic, differenty types of dynamic are connected to attributes in the object. The objectname
is exchanged to '$hostobject' in the dynamics. Often you create the attributes IndWarning and

IndError in the main object, and color the symbol yellow or red, or flashing red, when these
are set.

F'ulF! e mvalve i T ;l;lﬂ

Fila Edil “vrclions Yiew Halp

Linzwidzh 1| 5 | Linetype 1| 5 | Testsize 8 5 | Helvet ca 5 || | Ecld
Ll 1] L] 08 3 | e A || iR | e 0] 2| L g4 ¥ 4| p | 4 ¥
DO Q) | | AlAn| — | 2| 21| | | ey =] & |] | | role| g2

i Object Attributes _:' e =10l =
File Functions Help
, = HostObject.DigFlash.Attribute $hostobject.IndErrors#Boolean =l
d (E HostObject.DigFlash.Color RedHigh?
CE HostObject.DigFlash.Colorz GrayFxi0 0.35
= HostObject.DigWaming.Attribute Fhostobject. IndWarming++ Boolean
= HostObject.Popupkenu.ReferenceObject $hostobject
(E HostObject.Access System | Maintenance | Process | Instrument | Operatorl | Opera:
CE HostObject.Cycle Inherit
CE HostObject.DynType Inherit | DigWaming | DigFash
(E HostObject.Action Inherit | PopupMenu
CE DynType HostObject
(B Action
(E Color Black L
(B Color2 Black
(B Colord Black
(B Colord Black
CE AnimSequence Cyclic
= HoConObstacle 0
= 3Slider 0 =
| { | | } |

The grahic symbol is drawn in Ge witch HostObject default dynamic.

24.5 Build the classvolume

When building the classvolume, a loadfile and two structfiles are created.

Loadfile
The loadfile is stored in $pwrp_load and has the same name as the volume, with lower case.
The filetype is .dbs, e.g the loadfile for the volume CVolMerk1 is $pwrp_load/cvolmerkl.dbs.

The time when the loadfile is created is stored in the file. Furthermore the version of other
classvolumes that the loadfile is dependent on are stored. At runtime startup, there is a check
that the current versions in the system coincide with the versions registered in the loadfile.

If any version doesn't coincide, you get the message 'Version mismatch' and the startup is
aborted.

You can display the version of a loadfile, and the versions of the dependent volumes with
wb_Idlist.

$ wb_Idlist $pw p_Il oad/ cvol nerkl. dbs

Vol une CVol Mer k1l 21- DEC- 2007 13:52:05.22 (1198241525, 227130443) 25364
Vol Ref CVol Mer k1 21- DEC- 2007 13:52:05.22 (1198241525, 227130443) 25364
Vol Ref pwr s 12- DEC- 2007 08: 35:06. 98 (1197444906, 983976467) 1

Vol Ref pw b 12- DEC- 2007 08: 35:09.93 (1197444909, 930182284) 2

Vol Ref BaseConponent 12- DEC- 2007 08: 35:26.92 (1197444926, 926679004) 10
Structfiles

When building a classvolume, two includefiles are generated, a .h-file and a .hpp-file.

If the classvolume contains functions objects, or classes that are used in CArithm or
DataArithm objects, you have to include the .h file in $pwrp_inc/ra_plc_user.h.

Update Classes

When the classvolume is built, you have to update the classes in the root or sub volumes in
the project. The update is activated in the configurator for the root or sub volume, from the
menu with 'Function/Update Classes'. If a class is changed, instance objects of the class are
adapted to the changed class. All references to instances of the class will also be updated.

24.6 Documentation of classes

For $ClassDef and $Attribute objects, there is a documentation block, that is filled in from
the object editor. The documentations block, together with the class description, is used
when class documentation is generated to xtthelp or html format when the class volume is
built.

The documentation block for the $ClassDef object should contain a description of the class,
and the documentation block for the $Attribute object a description of the attribute.

24.6.1 Generate Xtt helpfiles

Helpfiles for xtt is generated with the command
co_convert -xv -d $pw p_exe/ $pw p_db/usercl asses. wb_| oad

The command generates a helpfile $pwrp_exe/'volumename'_xtthelp.dat, and it is proper to put
a link to the file in the xtt helpfile for the project $pwrp_exe/xtt_help.dat:

24.6.2

24.6.3

Example for the classvolume cvoltank

<topic> index

User classes<link>cvoltank," ,$pwrp_exe/cvoltank_xtthelp.dat

</topic>

<include> $pwrp_exe/cvoltank_xtthelp.dat

Generate html documentation

html files are generated by the command
co_convert -w -d $pw p_web/ $pw p_db/ usercl asses. wb_| oad

The command generates, among others, the file $pwrp_web/'volumename'_index.html that contains
the start page for the class documentation. This, together with the other files
($pwrp_web/'volumename'_*.html) should be copied to a proper directory of the web server.

A link to the documentation is made with a WebLink object pointing at the URL
‘volumename'_index.html.

If you want to be able to show the ¢ struct for the classes, you convert the h-file with
co_convert

co_convert -cv $pwp_web/ $pw p_inc/' vol ymenane' cl asses. h

If you also want to be able to display the code of plc-objects, you have to add aref tags
in the ¢ or h file of the code, and convert it with

co_convert -sv -d $pwp_web/ 'filenane’

ClassDef

Example

@\wut hor Honer Sinpson

@/ersion 1.0

@code ra_plc_user.c

@umrary Brief description of this class
Description of

this class.

See al so

@ink Exanple plat.htm

@l assl i nk Anot her Pl at e cvol vhxn2r _anot herpl ate. htm
Tags

Author Author or the class description

24.6.3.1

24.6.3.2

24.6.3.3

24.6.3.4

24.6.3.5

24.6.3.6

24.6.3.7

Version Version of the class

Code File that contains the code for the class
Summary Summary

Link Arbitrary link

Classlink Link to another class

wb_load syntax

@Author

Author. Optional.

Syntax
@\ut hor ' name of author'

@Version

Version. Optional.

Syntax
@/er si on 'versi on nunber'

@Code

For classes with plc-code you can state the name of the c-file. Optional.
Also the c-file has to be converted by the command: co_convert -c -d $pwrp_web/filename'

Syntax
@ode 'fil enane'
@Summary

Short description in one line. Optional.
This is shown in the indexfile in the xtt helpfile. Not used in html.

Syntax
@ummary 'text’
@Link

A link to an arbitrary URL. Is only displayed in the html documentation, not in Xtt.
The link should be placed after the description of the class.

Syntax
@ink "URL
@Classlink

A link to another class. This link works in both html and xtt.
The link should be placed after the description of the class.

Syntax
@l asslink "htm -fil enange'

wb_load syntax

The documentation of a class is written above the $ClassDef row.

@\ut hor Honer Si npson

@/ersion 1.0

@ode ra_plc_user.c

@umrary Brief description of this class
Description of

this class.

See al so
@ink Exanple plat.htm
@l asslink AnotherPl ate cvol vhxn2r _anot herpl ate. ht m

Obj ect Pl at $C assDef 1

! /**

Start of a documentation block.
All the text between !/** and !*/ will be written as a description of the class.

1%/
End of a documentation block.

24.6.4 Attribute

Example

@ummary Plate |ength
A nore detail ed description
of the attribute Length...

@Summary

Short description in one line. If there is a @Summary, this text is put into the table of
attributes in the html file. If there is no summary, the whole description is written instead.
Not used in xtt.

wb_load syntax
24.6.4.1 wb_load syntax

Documentation of an attribute is written above the $Attribute, $Input, $Output or $intern line.

!/**
' @ummry Plate length
! A nore detail ed description
! of the attribute Length...
Iy
Obj ect Length $Attribute 3
Body SysBody
Attr TypeRef = "pws: Type- $Fl oat 32"
EndBody

EndObj ect
1/x*

Start of a documentation block.
All the text between !/** and !*/ will be written as a description of the attribute.

1%/
End of a documentation block.
24.6.5 Syntax for c- and h-files

If you want to use the links to c- and h-files, these also have to be converted to html.
There is also a function to add bookmarks.

The structfile for the classes is automatically generated with bookmarks.
/ * %
M/Pl cC ass

Description for the class that is not displayed anywhere but in the code.

@ref MyYPl cCl ass MyPl cd ass
*/
void MyPl cC ass_exec(...)

@aref

@aref has to be placed inside a /*_* ... */ block. Inside the block, there can also be comments
that are not handled by the converter.

Syntax
@ref 'bookmark' 'text'

25

25.1

Administration

Users

To gain access to the ProviewR development and runtime environment you need to login with
username and password. Users are kept in the user database and are granted privileges which
state the users authority to make changes in the system.

Systems that share the same users are grouped into a system group, and the users for this
group are defined. You can also build a hierarchy of system groups where child groups inherit
the users of their parent, and additional users can be defined for each child.

A system is connected to a system group by the SystemGroup attribute in the $System object.
The notation for a system group in a hierarchy is the names of the group separated by a period,
for example 'Main.West.F1'.

In the example below Eric is responsible for all the systems in the plant, and is defined on
the highest level in the hierarchy. Nils is working with the west side of the plant and is
defined on the 'West' system group. Finally, Carl working with the systems in the F1 part of
the plant. All system groups have the attribute Userlnherit, which states that a child group
inherits all the users of the parent.

i%i PwR User Database - 10| x|

File Edit Functions Wiew Options Help

e AL AR R e PN oY]=Y

<% 3ystemGroupReg | | & Main SystemGroupRey -]
% UserRey Eric UserReq
= West systemGroupReq
& HNils UserReq
= AR 3ystemGroupReq
< Cad UserReq

L]
L]

Users and systemgroups are created in the Administrator:

- Start the administrator with the command 'pwra’

- Enter the UserDatabase from the menu 'File/Open/UserDatabase’.

- Login by entering the login command. Open the login prompt from the menu 'Functions/Command’
and enter 'login /adm' on the command line. If the systemgroup ‘administrator’ is present
you also have to add username and password to a user defined in the administrator systemgroup.

- Enter edit mode from the menu 'Edit/Edit mode'.

Systemgroups and users are represented by object of the classes SystemGroupReg and
UserReg, that are displayed in the palette to the left. An object is created by selecting

a class in the palette. After that, you click with the middle mousebutton on the future
sibling or parent to the new object. If you click on the map/leaf in the destination object,
the new object is placed as the first child, if you click to the right of the map/leaf,

it is placed as a sibling.

- Create a systemgroup by selecting 'SystemGroupReg' in the palette, and click with MB2
(the middle mousebutton) in the right window. Open the SystemGroupReg object and enter
name ant attribute for the system group. Enter the complete hierarchy name, e.g.
‘Main.West'.

- Create a user by selecting 'UserReg' in the palette and click with MB2 on the map/leaf
of the SystemGroupReg object that the UserReg should be a child of. Open the object and
enter username, password and privileges for the user.

- Save.

- Logout with the command 'logout'.

The user database resides in the directory $pwra_db.

25.2 Register Volumes

All volumes in a network must have a unique volumname and volume identity. To assure this,
all volumes are registered in a global volume.

The registration is done by the administrator:

- Start the administrator with the command 'pwra'’

- Enter volume mode from the menu 'File/Open/GlobalVolumelList'.

- Login as administrator.

- Enter edit mode from the menu 'Edit/Edit mode'.
Volumes are registered by objects of class VolumeReg, that are displayed in the palette to
the left. In the palette, there is also the $Hier class, that can be used to order the
VolumeReg objects in a tree structure.

- Create a VolumeReg object, open the object and enter volumename (equals objectname),
volumeidentity and project.

- Save.

- Logout with the command 'logout'.

Volume name

The name of the volume, a unique name with max 31 characters.

Volume Identity

The volume identity is a 32 bit word specified in the form v1.v2.v3.v4 where v1, v2, v3 and v4
are numbers in the interval 0-255. Dependent on the class of the volume, the numbers can be

chosen in separate intervals.

RootVolumes 0. 1-254. 1-254. 1-254
User ClassVolumes 0. 0. 2-254, 1-254

The DirectoryVolume always has the identity 254.254.254.253

25.3 Create project

A project is a number of nodes and volumes that share the same development environment. Usually
it consists of some process stations and a couple of operators stations that control a part of

the plant, but there are no restrictions in the size of a project. You can choose to have each

node in its own project or all the nodes in the same project.

- All the nodes in a project (on the same bus) have a nethandler link between each other.
- All the volumes and nodes share the same directory tree.
- All nodes have to be upgraded to new ProviewR versions at the same time.

A common size is 1-10 nodes in a project. Too many nodes will increase the communication
overhead and make it harder to upgrade the project.

Create the project in the administrator:

- Start the administrator with the command 'pwra'.

- The projectlist is shown as default when starting the administrator. It can also be opened
from the menu (File/Open/ProjectList).

- Login as administrator.

- Enter edit mode from the menu 'Edit/Edit mode'.
Projects are represented by objects of class ProjectReg, that are displayed in the palette
to the left. $Hier objects can be used to order the ProjectReg objects in a tree structure.

- Create a ProjectReg object and enter project name, base version, path and description.

- The project is created when saving. First you have to confirm the changes.

- Save and logout.

Project name

A project has a project name that identifies the project in the development environment. It is
similar the system name that identifies the project in the runtime environment, but it

doesn't have to be the same. Actually a system can have several projects in the development
environment. When upgrading or making a major modification of the system, it is advisable to
take a copy of the project and keep the currently running version of the system available for
minor corrections. The copy is then created under a new project name, though it has the same
system name.

Base

ProviewR is a multiversion system, i.e. different versions of ProviewR can be installed in

the same development environment and projects of different ProviewR versions can coexist in
the same development environment. A project points at a ProviewR base, e.g. V3.4, V4.0, and
when creating a project you have to choose which base the project should point at.

Path

The project consists of a directory tree where databases, source files, archives etc are
stored. The path is the root directory of this tree.

26 Revisions

A revision is a state in the development environment that is stored in a version control
system. The revision should include all source files to make it possible to restore a revision.
A revision can be used to review the state when the revision was created, and also to build
runable systems from the restored source to test or run a restored revision in production.

The currently supported version control system is Git. A new repository will be created on
$pwrp_root/src when the first revision is created.

Revision window

Revisions are handled from the Revision window that is opened from the File menu in the
configurator.

Create arevision

A new revision is created from Functions/New Revison in the menu. New revisions can only be
created if the currently checked out revision is the end point of a branch.

Revisions (on pwr55-1)

View Help

Jesk L
Restore Revisio e e -
<3 Delete Revision -JUN-2017 15:21:08 Grafcet expanded to 96 sheets
\E; Build Al -JUN-2017 15:48:30 Mew appl file
& WZUU Uo-JUN-2017 09:26:45 Updated fan control
F v2.0l1 08-JUN-2017 09:31:25 Fan contro| rei====asd

® New Revision (on pwr55-1) [-][0][x]

4 V20.1-1 08-JUN-2017 02:41:13 Init functi
& V2.0.1-2 08-JUN-2017 09:57:37 Print func
4 V2.0.2 08-JUN-2017 09:36:24 New fan grE BT T e IVZ.O.S
& V2.0.3 0B-JUN-2017 09:43:38 Merged wit
@ v2.04 08-UN-2017 09:50:50 Comments
Description INew pump

K]

| Ok | Cancel | O

Fig Create a new revision

Restore a revision

A revision is restored from Functions/Restore in the menu. Select the revision to restore
first.

Revisions (on pwr55-1)

G MNew Revision
3 Restore Revision | seameeywaiswames Grafcet expanded (o 96 Sheets
<3 Delete Revisio JUN-2017 15:48:30 New appl file
3 Build All -JUN-2017 09:26:45 Updated fan control
= v2.0.1 08-JUN-2017 09:31:25 Fan control trimmed
@t V2.0.1-1 08-JUN-2017 09:41:13 Init function in application added

Print function added to application
New fan graph

@ ‘u’EGlE

08-JUN-2017 085: 5? 37
o8- |II[J-.||1 22

09

V2.0.3 08-JUM-2017 09:43:38 Merged with V2.0.1-1
& V2.0.4 08-JUN-2017 09:50:50 Comments added in application
@ V2,05 08-JUN-2017 13:51:51 New pump

K1

I

Fig Restore a revision

When a revision is restored the checked out revision is marked with a radio button in the list.
Also in the configurator title bar, the current revision is written.

Revisions (on pwr55-1)

File Functions View Help
2N [ey]y
V1.0.23 7-JUN-2017 15:48:30 New appl file B

< V2.0.0 B-JUN-2017 09:26:45 Updated fan control
= v2.0.1 8-JUN-2017 09:31:25 Fan control trimmed

@& V2.0.1-1 08-JUN-2017 09:41:13 Init function in application added

@ V2.0.1-2 08-JUN-2017 09:57.:37 Print function added to application
3@ v2.0.2 8-JUN-2017 09:36:24 New fan graph n |
& V2.0.3 8-JUN-2017 09:43:38 Merged with vV2.0'1-1
& V2.0.4 8-JUN-2017 09:50:50 Comments added in application
@& V2.05 8-JUN-2017 13:51:51 New pump
Kl [+]

Fig An old revision is restored

Create a branch

If an old revision in the main line is restored, a branch can be created by creating a new
revision from this point. In the figure above, a branch has be created from revision V2.0.1.
New revisions can also be created from the end point of the branch. In the figure above, a
new revision can be created from V2.0.1-2 that is an end point, but not from V2.0.1-1.

New files

New files, e.g. c-applications, are not automatically added to the git repository.

This has to be done manually. New files are displayed by Git as untracked files in the

'git status' command. Untracked files can be added with the 'git add' command and will then
be included in the next revision.

Note! It's important to add new files to be able to restore a complete revision.

Example
> git status
On branch B_V2.0.5
Untracked fil es:
(use "git add <file>...

to include in what will be commtted)
appl /ra_appl . c

> git add appl/ra_appl.c

27 Tools

pwrc Command interface to development database.
wb_ge Ge editor
co_help Help window.
pwr_user Command line interface to user database.
whb_Idlist Check loadfile versions.

27.1 pwrc

Command interface to development database.

pwr ¢ Provi ewR wor kbench conmands
Ar gunent s:
-v "vol une' Load vol unme ' vol unme'.
-h Print usage.

O her argunents are treated as a command and passed to the command parser
If a command is given as an argument, the command will be executed and the
programis then term nated.

If no conmand is given, pwc will prompt for a comrand.

Exanpl es:
$ pwc -v MyVol une
pwr ¢>
$ pwc -a show vol une

directory Attached Db $DirectoryVol une 254.254. 254. 253
My Vol ure Db $Root Vol une 0.1.99.20

27.2 co_help Help window

Open a ProviewR help file. By default the project help file is opened.
>co_hel p
Usage:

co_help [-t "topic'] [-s "sourcefile'] [-b 'bookmark']

Ar gunent s:
-t Hel p topic, default 'index'
-S Source hel pfile

-b Bookmar k

- Language, e.g sv_se

-C Qpen Configuration help
-d Open Designer's Quide
-g Open Ge Reference Manual
-0 Open Operator Help

27.3 wb_ge Ge editor

Start the Ge editor without opening a database.
Useful when you fast want to open a Ge graph, but will not make any database
connections.

> wb_ge ['pwg-file']

27.4 pwr_user

You use pwr_user to create systemgroups and users in the user database.
The configuration is performed with commands.

pwr_user is started from the command prompt.

Below is a description of the different commands available to create, modify and list
systemgroups and users.

add group Add a system group
add user Add a user
get Get a user
list List systemgroups and users
load Load the latest saved database
modify group Modify a system group
modify user Modify a user
remove group Remove a system group
remove user Remove a user
save Save
su Login as super user

27.4.1 add
add group
add user

27.4.1.1 add group

Create a systemgroup
pw _user> add group 'nane' [/nouserinherit]

/nouserinherit The attribute UserInherit is not set for the systemgroup.
As default Userinherit is set.

27.4.1.2 add user

Create a user.

pwr_user> add user 'name' /group= /password= [/privilege=]
[/rtread][/rtwrite][/system][/maintenance][/process]
[/instrument][/operatorl][/operator2]...[operl0][/devread]
[/devpilc][/devconfig][/devclass]

/group Systemgroup of the user
/password Password of the user
Iprivilege Privileges if this is supplied as a mask, i.e an integer value
Irtread The user is granted RtRead
Irtwrite The user is granted RtWrite
/system The user is granted System
/maintenance The user is granted Maintenance
/process The user is granted Process
/operatorl The user is granted Operatorl
/operator9 The user is granted Operator9
/operator10 The user is granted Operatorl0
/devread The user is granted DevRead
/devplc The user is granted DevPlIc
/devconfig The user is granted DevConfig
/devclass The user is granted DevClass
27.4.2 get

Fetches a user with an algorithm used in runtime.

pwr_user> get 'username' /group= /password=

27.4.3 list

Lists systemgroups and users.

pwr_user> list

27.4.4 load

Loads the latest saved database and reverts the current session.

27.4.5 modify

modify group
modify user

27.45.1 modify group
Modify a systemgroup.
pw _user> nodi fy group 'name' /[no]userinherit
/userinherit Sets the attribute Userlnherit that states that the systemgroup

inherits users form its parent in the systemgroup hierarchy.
Negated with /nouserinherit

27.4.5.2 modify user

Modify a user.

pw _user> nodi fy user 'nane' /group= [/password=][/privilege=]

[/rtread][/rtwrite][/systen][/ mai ntenance] [/ process]
[/instrunent][/operatorl][/operator2]...[oper10][/devread]
[/ devpl c][/devconfig][/devcl ass]

/group Systemgroup of the user
/password Password of the user

[privilege Privileges if this is supplied as a mask, i.e an integer value
Irtread The user is granted RtRead
[rtwrite The user is granted RtWrite
/system The user is granted System
/maintenance The user is granted Maintenance
/process The user is granted Process
/operatorl The user is granted Operatorl
/operator9 The user is granted Operator9
/operator10 The user is granted Operator10
/devread The user is granted DevRead
/devplc The user is granted DevPIc
/devconfig The user is granted DevConfig
/devclass The user is granted DevClass

27.4.6 remove

remove group
remove user

27.4.6.1 remove group

Remove a system group.

pwr _user> renove group 'name
27.4.6.2 remove user
Remove a user.

pw _user> renove user 'nane' /group=
27.4.7 save

Save the current session.

pwr _user > save

27.4.8 su

Login as super user. As super user you can see passwords for users when listing the database.
su requires password.

pw _user> su 'password'

275 wb_ldlist

Display version of volumes in dbs-files.
Used to investigate version mismatch.

> wb_Idlist <dbs-file>

Example

wb_l dlist $pw p_| oad/ vol pw deno. dbs

Vol une
Vol Ref
Vol Ref
Vol Ref
Vol Ref
Vol Ref
Vol Ref
Vol Ref
Vol Ref
Vol Ref

Vol Pwr Deno 27- MAR- 2014 11: 06: 48. 67
Vol Pwr Deno 27- MAR- 2014 11:06: 48. 67
pwr s 14- FEB- 2014 16:57:21. 19
pwr b 14- FEB- 2014 16:57: 24.82

BaseConponent 14- FEB- 2014 16:57:52. 68
O her Manuf acturer 14- FEB-2014 16: 58: 22. 73

ABB 14- FEB- 2014 16:58:10. 44
Profi bus 14- FEB- 2014 16:57: 34. 40
I nor 14- FEB- 2014 16:58:16. 18
G herl O 14- FEB- 2014 16:57:55.31

coooo

eeoee

coooooo0o0

. 254.254. 200
. 254.254. 200

0.1

0.2
0.10
0.250.1
250. 2
250.7
250. 8

.250. 10

Root Vol une

Root Vol urre

Cl assVol urre
d assVol une
d assVol une
C assVol une
Cl assVol une
Cl assVol unme
Cl assVol urre
d assVol une

28 OPC

ProviewR has implemented the OPC XML/DA protocol for data exchange with other automation
software. For more information about OPC see www.opcfoundation.org.

28.1 OPC XML/DA Server

An OPC XML/DA Server is a web service from which an OPC XML/DA Client can get information of a
ProviewR system. A opc client can, for example, browse the object hierachy, read and write
attribute value, and subscribe to attributes.

The opc server implements the http protocol as well and is not connected to a web server. The
port number of the opc_server is set to 80, the URI for the web service is on node 'mynode’ is

http:// nynode

If a web server is present, this normally has allocated the port 80, and another port has to be
chosen for the opc_sever. If port 8080 is chosen, the URI will be

http:// mynode: 8080

Browsing

The OPC XML/DA browsing supports branches and items. The item contains a value, while the
branch is an hierarchical component without a value. There is no support for objects, so an
object has to be implemented as a branch, while an attribute is implemented as an item. Also
arrays are implemented as branches, while array elements (that is not a class) is implemented
as an item.

Threads

If the opc client uses the HoldTime and WaitTime attributes in the SubscriptionPolledRefresh
request, the opc server has to be multi threaded, that is, for every request, a new thread is
created. If the HoldTime and WaitTime is not used (as in the ProviewR opc client), all requests
can be handled in a single thread, which is less time consuming. Multithreads or not are
configured in the configuration object for the opc server. The default value is 'lfNeeded'

which turns on the multithreading for a client if HoldTime or WaitTime are detected.

Client access

To gain access to a ProviewR opc server, the ip address of the client has to be configured in
the configuration object for the opc server. Here you can also choose if the client has
ReadWrite or ReadOnly access, where ReadOnly allows the client to read and subscribe to
attribute values, while ReadWrite also is allowed to write attribute values.

28.1.1

Buffering of subscriptions

The server does not support buffering of subscriptions.

Configuration

The opc server is configured with a Opc_ServerConfig object that is placed in the Node
hierarchy. The configuration object will cause a server process (opc_server) to start at
ProviewR startup.

OPC XML/DA Client

The ProviewR opc client is implemented as an extern volume, which is mounted somewhere in the
object tree of the root volume. Under the mount object, the branches and items of the server

are displayed with special opc objects. An Opc_Hier object represents a branch and Opc_Int an
item with an integer value, Opc_Boolean an item with a boolean value etc. If an item object is
opened, the item values are displayed in a Value attribute, and some other properties as
description, lowEU, highEU, engineeringUnit, lowIR and highIR are displayed. When the object is
opened a subscription is started, and the value is continuously updated. For integer and float
items there is also an object graph that displays a trend of the value.

With the opc client you can

- browse the branches and items in Xtt, and also display item values and set item values.
- subscribe item values and display them in a Ge graph.
- fetch item values into the plc logic and also write values to items.

The opc client requires that name browsing is implemented in the opc server.

Ge

An item value can be displayed in a Ge graph by using the name in the extern volume. For
example, if the mount object for the extern volume is 'Ext-P1', and the local name of the item
is

[P1/ Si gnal s/ Ai 22

the signal name in Ge will probably be (this is dependent of the browsing function of the
server)

Ext - P1- P1- Si gnal s- Ai 22. Val ue##F| oat 32

presuming that it is a float datatype.

Plc

Item values can also be handled in the plc program, using the GetExt... and CStoEXxt... objects.
The objects normally used for getting and storing attributes GetDp, GetAp, StoDp, StoAp etc.

can not be used, as they require that the referenced name is known in the development
environment, which is not the case for most extern volumes. In the Ext objects, the reference

is made with a name string, making it possible to enter the item name. To get the value of the
item in the previous example, you should use a GetExtFloat32 object, and the object name should
be

Ext - P1- P1- Si gnal s- Ai 22. Val ue

To store a value in an item, lets say /P1/Signals/Ao05, you use a CStoExtFoat32. This object
makes a conditional storage, and only on a positive edge of the condition. Compare with the
CStoAp, where the value is stored, as long as the condition is true. The reference name in the
CStoExtFloat32 object in this case should be

Ext - P1- P1- Si gnal s- Ao5. Val ue

Client process

For each opc client-server connection a client process has to be started. The executable for
this process is opc_provider that has the arguments

1. Opc server URL

2. Extern volume id

3. Extern volume name

4. Server identity (optional, default 200)

Configuration

Register ExternVolume

Register the externvolume in the GlobalVolumelList with a volume name and identity.

Application file

Add a line in the application file to start the opc_provider. Here is an example for an opc
client connecting to the opc server 'http://servernode:8080'. The registered externvolume has
the name MyOpcVolume with volume id 0.1.99.55

opc_provider, opc_provider, noload, run, opc_provider, 9, nodebug,
http://servernode: 8080 0.1.99.55 MyQpcVol une

If item values are fetched into the plc, the priority should be set to 4 (sixth argument).

Mount object

Create a mount object in the plant hierarchy of the rootvolume, and insert the objid of the
volumeobject in the externvolume into the Object attribute. In the example above this objid is
00.1.99.55:0.

Hint
The application file resides on $pwrp_load and has the name

$pw p_| oad/ | d_appl ' nodenane' ' busnunber' .t xt

where nodename is the name of the node, and busnumber the gcom bus number. If the node is
'mynode’ and the busnumber is 507, the filename will be

$pwr p_I oad/ | d_appl _mynode_507. t xt

29

Commands

build

check classes
close graph
compile
configure card
connect

copy

copy object
create bootfiles

Build node, volume or object
Check if any classes need update
Close a Ge graph

Compile plcpgm

Configure a card object

Connect signal and channel
Copy selected object trees

Copy an object

Create bootfiles

create crossreferencefil@éeate crossreferencefiles

create flowfiles
create loadfiles
create object
create structfiles
create volume
cut

define

delete object
delete tree
delete volume
disconnect
display
distribute

edit

exit

help

generate web
list channels
list descriptor
list hierarchy
list plcpgm

list signals
login

logout

move object
new buffer

one

open buffer
open graph
paste

print

redraw

release subwindow
revert

save

search

set advanceduser

Create flow files for plc trace
Create loadfiles

Create an object

Create structfiles

Create a volume

Cut objects

Define a symbol

Delete an object

Delete an object tree

Delete a volume

Disconnect signal and channel
Display a window

Distribute to operator or process station
set edit mode

close wtt

Display help

Generate webpages

List channels

List from listdescriptor

List hierarchy

List plcprogram

List signals

User login

User logout

Move an object

Create a new buffer

One window

Open buffer selection window
Open a Ge graph

Paste buffer

Print plcpgm

Redraw plcpgm

Continue execution with graph in window object.
Revert session

Save session

Search

Set advanced user

set alltoplevel
set attribute

set db

set inputfocus
set showalias
set showattrref
set showattrxref
set showclass
set showdescription
set showobjref
set showobjxref
set subwindow
set template
set verify

set window
setup

show children
show license
show object
show objid
show script
show symbol
show user
show version
show volumes
sort

two

update classes
wb dump

wb load

Symbols

related subjects

script

Display all toplevel objects

Set object attributes

Set database

Set input focus to window
Display alias name

Display attribute references
Display attribute x-references
Display object class

Display description

Display object references
Display object x-references
Open a graph in a window object
Set template values for objects
Script verification

Set window width and height
Wit setup

Show the children of an object
Show license terms

Show an object

Show object identity

Show scriptfiles

Show a symbol

Show current user

Show wtt version

Show all volumes in the database
Sort the children of an object
Two windows

Update classes

Dump objects to textfile

Load objects from textfile

29.1 Command build

Call the build method for a node, a volume or an object.

wtt> build node /name= [/force][/debug][/manual][/crossreference]

wtt> build volume /name= [/force][/debug][/manual][/crossreference]

wtt> build classvolume /name= [/force][/debug][/manual][/crossreference]
wtt> build object /name= [/force][/debug][/manual][/crossreference]

/name Node name, volume name or object name.

[force Don't check any dependencies, build everything.
/debug Build with debug, i.e. compile and link with debug.
/manual Just build the specified item.

[crossreferences Create crossreference files. Valid for building volumes.

29.2 Command check classes

Check if any classes need update.

wtt> check classes

29.3 Command close graph

Close a Ge graph.
wtt> close graph /file=

ffile Name of the Ge graph.

29.4 Command compile

Compile plcprograms.

If no hierarchy, plcpgm or window is specified, the selected plcpgm
will be compiled.

wtt> compile [/debug]

wtt> compile /plcpgm= [/debug]

wtt> compile /window= [/debug]

wtt> compile /hierarchy= [/debug][/modified][/from_plcpgm=]
wtt> compile /volume= [/debug][/modified][/from_plcpgm=]
wtt> compile /allvolumes [/debug][/modified][/from_plcpgm=]

/plcpgm Name of plcpgm object that will be compiled.

/window Name of plcwindow object that will be compiled.

/hierarchy All plcpgm's in the hierarchy will be compiled.

/volume Volume name. All plcpgm's in the volume will be compiled.
/allvolumes All plcpgm's in all volumes in the database will be compiled.
/debug Compile with debug.

/modified Only modified plcwindows will be compiled.

29.5 Command configure card

Create a card with channels.

wtt> configure card /rack= /cardname= /channelname= /chanidentity=

[rack
/cardname

/channelname

/chanidentity

/chandescripton

/chandescription= /table=
Name of rack object that the card will belong to.
Name of card. Last segment of name.

Name of channel. Last segment of name.

A '# will be replaced with the channel number.

For example /chan=di33## will give the channelnames
di3301, di3302... If there is more than one channel
channelname has to contain a '#' sign.

Identity of the channel. Will be inserted into the Identity-
attribute of the channel.

Channel description. Will be inserted into the Description-
attribute of the channel.

29.6 Command connect

Connect a signal and a channel.

wtt> connect /source= /destination= [/reconnect]

/source A signal or channel object.
/destination A signal or channel object.
/reconnect If the source or destination already is connected

it will first be disconnected.

29.7 Command copy

Copy selected object trees to paste buffer.
wtt> copy [/keepreferences] [/ignore_errors]
/keepreferences Keep references to objects outside the copied trees. By default

these references will be zeroed.
fignore_errors Try to complete the copy despite detected errors.

29.8 Command copy object

Copy an object or an object tree.

wtt> copy object /source= /destination= /name= [/hierarchy]

/source
/destination
/name
/hierarchy
[first

/last

[after

/before

[/first] [/last] [/after] [/before]

The object that will be copied.

The parent or sibling to the created object.
The name of the created object. Last segment.
If the source-object has children, the child tree
will also be copied.

The object will be inserted as first child to

the destination object.

The object will be inserted as last child to

the destination object.

The object will be inserted as sibling after

the destination object.

The object will be inserted as sibling before
the destination object.

29.9 Command create bootfiles

Create new bootfiles.

wtt> create bootfiles /nodeconfig= [/debug]
wtt> create bootfiles /allnodes [/debug]

/nodeconfig The name of the NodeConfig-object of the
node for which nodefile will be created.

fall Create bootfiles for all nodes in the project.

/debug Link plcprogram with debug.

29.10 Command create crossreferencefiles

Create files for displaying crossreferences in xtt and rtt for
the current volume.

wtt> create crossreferencefiles [/graph] [/simulation]

/graph Search Ge graphs for cross references.
/simulation Add cross references in simulation objects.

29.11 Command create flowfiles

Create flowfiles for plc trace.
The layout of the plc windows are stored in flow files and used
in plc trace.

wtt> create flowfiles /plcpgm=
wtt> create flowfiles /hier=
wtt> create flowfiles /all

Command to create flowfiles from template plcpgm's in a class volume
wtt> create flowfiles /template/plcpgm=
wtt> create flowfiles /template/hier=Class

fall Create flowfiles for all plc programs in the volume

(can not be used in class volumes, use /hier=Class instead).
/plcpgm Create flowfiles for the specified PlcPgm object.
/hierarchy Create flowfiles for all PlcPgm object under the

specified hierarchy.
ltemplate Create flowfiles for PlcTemplate programs in a class volume.

29.12 Command create loadfiles

Create loadfiles for a volume.

wtt> create loadfile /volume=
wtt> create loadfile [/class] [/all]

/volume Create loadfiles for a specific volume.

fall Create loadfiles for all root volumes
in the database.

/class Create loadfiles for all classvolumes in the database.

29.13 Command create object

Create an object.

wtt> create object /destination=/name=/class=
[/first] [/last] [/after] [/before]

/destination The destination of the new object. The position
of the new object will be child or sibling relative
to the destination object.

/name Name of the new object. Last segment.
[class Class of new object.
[first The object will be inserted as first child to

the destination object.

llast The object will be inserted as last child to
the destination object.

[after The object will be inserted as sibling after
the destination object.

/before The object will be inserted as sibling before
the destination object.

29.14 Command create structfiles

Create c include-files for classes in a classvolume.
wtt> create structfiles [/files=]

ffiles Name of wb_load-file.
Default name $pwrp_db/userclasses.wb_load

29.15 Command cut

Copy selected object trees to paste buffer, and remove the objects
in the current volume.

wtt> cut [/keepreferences]

/keepreferences Keep references to objects outside the copied trees. By default
these references will be zeroed.

29.16 Command define

Define a symbol.

wtt> define 'symbolname’ 'text'

related subjects

symbol
show symbol
symbolfile

29.17 Command delete object

Delete an object.
wtt> delete object /name= [/noconfirm] [/nolog]
/name Name of object.

/noconfirm Delete without confirm.
/nolog The operation will not be logged on the output device.

29.18 Command delete tree

Delete an object tree.
wtt> delete tree /name= [/noconfirm] [/nolog]
/name The root object of the tree.

/noconfirm Delete without confirm.
/nolog The operation will not be logged on the output device.

29.19 Command disconnect

Disconnect a signal or a channel.
wtt> disconnect /source=

/source A signal or channel object.

29.20 Command display

Display plant or node hierarchy window (w1 or w2).

wtt> display w1l
wtt> display w2

29.21 Command distribute

Distribute files to operator or process station.
Creates a distribution package, copies the package to
the station and unpacks the package.

wtt> distribute /node= [/package] [/file=]

/node Node to distribute to.
/package Only create package. The package is created but not copied.
ffile Package file name. Copies an existing package without creating a

new package.

29.22 Command edit

Enter or leave edit mode.

wtt> edit
wtt> noedit

29.23 Command exit

Close wit.

witt> exit

29.24 Command help

Display help information for a subject.
The help information will be searched for in a help file. The file can be the base helpfile,
the project helpfile or another help file.

If no helpfile is supplied the subject will be searched for in the base and project helpfiles.

wtt> help 'subject'
wtt> help 'subject’ /helpfile=

/helpfile A help file that contains information of the help subject.

related subjects

helpfile

29.25 Command generate web

Generate html-files for webpages configured by Web-objects in the
node hierarchy of the current volume.

wtt> generate web

29.26 Command list

Print a list of objects and attributes.

The lists will be sent to a printer queue specified by the
symbol PWR_FOE_PRINT.

wtt> list descriptor /descriptor=

wtt> list channels [/node=]

wtt> list signals [/hierarchy=]

wtt> list plcpgm [/plcpgm=] [/hierarchy=]
wtt> list hierarchy [/hierarchy=]

29.27 Command list channels

List cards and channels.

wtt> list channels [/node=] [/volume=] [/allvolumes] [output=]

/node $Node object.

/volume List objects in this volume.

/allvolume List objects in all volumes.

/output Output file. If output file is supplied, the list

will not be sent to the printer.

29.28 Command list descriptor

Print a list described by a ListDescriptor object.
wtt> list descriptor /descriptor=

/descriptor ListDescriptor object.

29.29 Command list hierarchy

List of PlantHier and NodeHier objects.

wtt> list hierarchy [/hierarchy=] [/volume=] [/allvolumes] [output=]

/hierarchy Hierarchy object.

/volume List objects in this volume.

/allvolume List objects in all volumes.

/output Output file. If output file is supplied, the list

will not be sent to the printer.

29.30 Command list plcpgm

List of PlcPgm objects.

wtt> list plcpgm [/hierarchy=] [plcpgm=] [/volume=] [/allvolumes] [output=]

/plcpgm Plcpgm object.

/hierarchy Hierarchy object.

/volume List objects in this volume.

/allvolume List objects in all volumes.

/output Output file. If output file is supplied, the list

will not be sent to the printer.

29.31 Command list signals

List of signals and crossreferences to the signals.

wtt> list signals [/hierarchy=] [/volume=] [/allvolumes] [output=]

/hierarchy Hierarchy object.

/volume List objects in this volume.

/allvolume List objects in all volumes.

/output Output file. If output file is supplied, the list

will not be sent to the printer.

29.32 Command login

Login with username an password. The privileges of the user will be
fetched from the user database, and affect the access to the system.

wtt>login 'username’ 'password’

If you want to create or modify a project, user or register a volume,
you login as administrator with the qualifier /administrator. You must
specify a user in the systemgroup ‘administrator'. If this systemgroup
doesn't exist, username and password are not required.

wtt>login /administrator ‘'username' ‘password'

related subjects

logout
show user

29.33 Command logout

Logout a user, and return to the original user.

wtt> logout

related subjects

login

29.34 Command move object

Move an object.

wtt> move object /source= /destination= [/rename=] [/first] [/last] [/after] [/before]
wtt> move object /source= /rename=

/source

/destination

/rename

[first

/last

[after

/before

Name of object to move.

The parent or sibling to the object after the move.
New object name, if the object name should be changed.
Last segment. If no destination is supplied, the object
will only be renamed, not moved.

The object will be inserted as first child to

the destination object.

The object will be inserted as last child to

the destination object.

The object will be inserted as sibling after

the destination object.

The object will be inserted as sibling before

the destination object.

29.35 Command new buffer

Create a new empty buffer.
wtt> new buffer /name=

/name Name of the buffer

29.36 Command one

Display one window. The window which currently owns the input
focus is kept.

wtt> one

29.37 Command open buffer

Open the buffer selection window.

wtt> open buffer

29.38 Command open graph

Open a Ge graph.
If modal is selected, the execution of the script is continued
when the graph is closed.

wtt> open graph /file= /modal

ffile Name of the Ge graph.
/modal Modal.

29.39 Command paste

Paste object from the last copy or cut operation into the current volume.
With the buffer option, an older paste buffer can be pasted.

wtt> paste [/keepoid] [/buffer=]

/keepoid Keep the object identities if possible.

/buffer Name of the buffer that should be pasted. By default
the last buffer is used.

/into Copy the root objects of the paste buffer as child to
the selected object.

ltoplevel Copy the root objects of the paste buffer to the toplevel.

Has to be used when copying to an empty volume.

29.40 Command print

Print plc documents.

wtt> print /plcpgm= [/nodocument] [/nooverview]
wtt> print /hierarchy=[/nodocument] [/nooverview]

/plcpgm Print documents in a plcpgm.
/hierarchy Hierarchy object. All plc in the hierarchy will

be printed.
/nodocument The plc-documents will not be printed.
/nooverview The overview of the plc-window will not be printed.
/pdf Print to pdf file.

fall Print all plcpgms.

29.41 Command redraw

Redraw the plc code.

wtt> redraw /all
wtt>redraw /hierarchy=
wtt> redraw /plcpgm=

/plcpgm Redraw a plcpgm.
/hierarchy Hierarchy object. All plc in the hierarchy will
be redrawn.

fall Redraw all plcpgms.

29.42 Command release subwindow

Continue the execution of a script that has opened a graph

in a window object by the command 'set subwindow' or the
function 'SetSubwindow' with modal selected.

The release command should be executed from a pushbutton
in the graph with actiontype command.

wtt> release subwindow ‘graph’

graph Name of the main graph.

29.43 Command revert

Revert session.

wit> revert

29.44 Command save

Save session.

wtt> save

29.45 Command search

Search for an objectname or a string.

wtt> search 'object’
wtt> search /regularexpression 'expression’
wtt> search /next

29.46 Command set advanceduser

Set or reset advanced user.

wtt> set advanceduser
wtt> set noadvanceduser

related subjects

advanced user

29.47 Command set alltoplevel

Show all the root objects in the database, not only the
root objects defined for the plant hierarchy or the
node hierarchy.

wtt> set alltoplevel
wtt> set noalltoplevel

29.48 Command set attribute

Set a value to an attribute.
Objects are selected by the name, class and hierarchy qualifiers.

wtt> set attribute /attribute= [/value=] [/name=] [/class=] [/hierarchy=]
[/noconfirm] [/nolog] [foutput] [/noterminal]

/attribute Name of attribute.

/name Name of object.

Ivalue Value to insert in the attribute. If no value is given
a question will be asked for each object.

[class Select object of this class.

/hierarchy Only successors to this object will be selected.

/noconfirm No confirm request is issued.

/nolog Operation is not logged to output device.

/output Output file.

/noterminal Operations will not be logged in terminal.

Example

wt> set attribute /name=Hl-Punp /attr=Description /value="Water punp" /noconf

29.49 Command set db

Connect to the database with the supplied id.
This has no affect if a database already is open.

wtt> set db /dbid=

/dbid Database identity.

29.50 Command set inputfocus

Set input focus to the plant or the node hierarchy window (w1 or w2).

wtt> set inputfocus wl
wtt> set inputfocus w2

29.51 Command set showalias

Display the aliasname of the objects in the plant and node hierarchy.

witt> set showalias
wtt> set noshowalias

29.52 Command set showattrref

Display the number of connected attribute references
of the objects in the plant and node hierarchy.

wtt> set showattrref
wtt> set noshowattrref

29.53 Command set showattrxref

Display the number of connected attribute x-references of
the objects in the plant and node hierarchy.

wtt> set showattrxref
wtt> set noshowattrxref

29.54 Command set showclass

Display the class of the object in the plant and node hierarchy.

witt> set showclass
wtt> set noshowclass

29.55 Command set showdescription

Display the description of the objects in the plant and node hierarchy.

wtt> set showdescription
wtt> set noshowdescription

29.56 Command set showobjref

Display the number of connected object references of the objects in the
plant and node hierarchy.

wtt> set showobjref
wtt> set noshowobjref

29.57 Command set showobjxref

Display the number of connected object x-references of the objects in the
plant and node hierarchy.

wtt> set showobjxref
wtt> set noshowobjxref

29.58 Command set subwindow

Open a graph in a window object in a previously opened graph, or
exchange a graph in a multiview cell.

wtt> set subwindow 'graph’ /name=/source=
wtt> set subwindow 'multiview-object' /name= /source= [/continue]

/name Name of the window object.
/source Name of graph that is to be opened in the window object or
in the multiview cell.
/continue Can be used if the command is executed from a Ge button with

other dynamics to execute. Should not be used if the graph
with the button itself is exchanged.

29.59 Command set template

Set template values for some attributes that affect the layout

in the plceditor.

wtt> set template [/signalobjectseg=] [/sigchanconseg=] [/shosigchancon=]

[signalobjectseg

/sigchanconseg

/shosigchancon

/shodetecttext

[/shodetecttext=]

Number of segments of the signal name that will
be displayed in 'Get' and 'Set' objects in

the plc-editor.

Number of segments of the channel name that will
be displayed in 'Get' and 'Set' objects in

the plc-editor.

Display the channel name in 'Get' and 'Set'
objects in the plc-editor.

Display the detect text in ASup and DSup

objects in the plc-editor.

29.60 Command set verify

Display all executed lines when running a script.

wtt> set verify
wtt> set noverify

29.61 Command set window

Set window width and height.
wtt> set window /width=/height=

/width width in pixels.
/height height in pixels.

29.62 Command set volume

set volume is obsolete.

29.63 Wit setup

Setup of wtt properies

DefaultDirectory Default directory for commandfiles.
SymbolFilename Symbolfile.

Verify Verify commandfile execution.
AdvancedUser User is advanced.

AllToplevel Display all toplevel objects.

Bypass Bypass some edit restrictions.

29.64 Command show children

Display en object and it's children
wtt> show children /name=

/name Name of the parent object.

29.65 Command show license

Show license terms.

wtt> show license

29.66 Command show object

List objects.

wtt> show object [/name=] [/hierarchy=] [/class=] [/volume=] [/allvolumes]
[/parameter=] [/full] [foutput=] [/noterminal]
wtt> show object /objid=

/name Object name. Wildcard is supported.

/hierarchy Hierarchy object. Only object in the hierarchy will be
selected.

[class Only objects of this class will be selected.

/volume Name of volume.

/allvolumes Search of objects will be performed in all volumes.

/parameter List the value of an attribut for the selected objects.

[full Display the content of the objects. Attributes that
differ from template value will be displayed.

/output Output file.

/noterminal Output will not be written to terminal.

/objid Display object for a specified obijid.

29.67 Command show objid

Show the obijid of an object.
If name is ommitted, the objid of the current selected
object is shown.

wtt> show objid [/name=]

/name Object name.

29.68 Command show script

Provides a list of scriptfiles.
Wildcard with asterisk (*) can be used to look up files.

wtt> show script ['scriptspec’]

29.69 Command show symbol

Show one symbol, or all symbols

wtt> show symbol 'sym®lbdw symbol ‘symbol’
wtt> show symbol Show all symbols
related subjects

define
symbol

29.70 Command show version

Show the witt version

wtt> show version

29.71 Command show volumes

Show all volumes in the database.

wtt> show volumes

29.72 Command sort

Sort the children of an object in alphabetical order, or in class order.
If no parent is given, the children of the selected objects will be sorted.

wtt> sort /parent= [/class] [/sighals]

/parent Parent to the objects that will be sorted.
[class Sort in class order.
[signals Sort signal and plcpgm objects in class order,

and other objects in alphabetical order.

29.73 Command two

Display two windows. Both the plant and the node hierarchy window are
displayed.

witt> two

29.74 Command update classes

Update classes in the attached volume.

wtt> update classes

29.75 Command wb dump

Dump the volume or a part of the volume to text file.

wtt>wb dump /output= [/hierarchy=]

/hierarchy Hierarchy object. The object and its child tree will
be written to text file.
/output Output file.
/nofocode Don't write plc code for functionobjects with template

code. This will reduce the size of the dumpfile. New

code will be copied when the plc is compiled.
/keepname Write extern references by name instead of identity string.
/noindex Don't write object index in the dumpfile.

29.76 Command wb load

29.77

Load the database or from wb_load-file or dbs-file.

wtt> wb load /loadfile=

lloadfile Name of file. Can be of type .wb_load, .wb_dmp or .dbs.
/noindex Ignore object indexes in the dumpfile and create new object identities.
Symbol

A wtt symbol can be used as a short command or as string replacement
in a command. If the symbol is used as string replacement the symbol-
name should be surrounded by quotes.

Symbols are created with the define command.
The define-commands can be executed by the symbolfile.

Example of symbol used as a short command.

wtt> define pl "show chil d/ nane=hqgl - hvk- punpar - punpl1”
wt> pl

Example of symbol used as string replacement

wtt> define pl hqgl-hvk-punpar-StartPunpl
wtt> open trace 'pl'

related subjects

define
show symbol
symbolfile

30

Wit script

Execute script

Datatypes and declarations

Datatypes
Datatype conversions
Variable declarations
Operators

Statements

main-endmain
function-endfunction
if-else-endif
while-endwhile
for-endfor

break

continue

goto

include

Input/output functions

ask()
printf()

say()
scanf()

File handling functions

fclose()

felement()

fgets()

file_search()
fopen()

fprintf()

fscanf()
translate_filename()

String functions

edit()
element()
extract()
sprintf()
strchr()
strrchr()
strlen()
strstr()

toupper()

tolower()

Database functions

GetAttribute()
GetChild()
GetParent()
GetNextSibling()
GetNextVolume()
GetClassList()
GetNextObject()
GetClassListAttrRef()
GetNextAttrRef()
GetTemplateObject()
GetNextTemplateAttrRef()
GetObjectClass()
GetNodeObject()
GetRootList()
GetVolumeClass()
GetVolumelList()
SetAttribute()
CreateObiject()
RenameObiject()
MoveObject()

InLib()
OpenPlcPgm()
CreatePIcObject()
ClosePlcObiject()
CreatePlcConnection()
SetPIcObjectAttr()
PlcConnect()

System functions

exit()
get_namespace()
set_namespace()
system()
terminate()

time()

tzset()

verify()

Miscellaneous functions

GetProjectName()
CheckSystemGroup()
CutObjectName()
MessageError()
Messagelnfo()
GetCurrentText()
GetCurrentObject()
GetCurrentVolume()
ISW1()

ISW2()

EditMode()
MessageDialog()
ConfirmDialog()

30.1

30.2

30.3

ContinueDialog()
PromptDialog()
OpenGraph()
CloseGraph()
SetSubwindow()
GetVersion()
get_pwr_config()
get_node_name()

getmsg()
EVEN()

ODDY()

wtt-commands

wtt-commands

Execute a script

A script-file will be executed from the command-line with the command

wtt> @'filename’

Datatypes

The datatypes are float, int and string.

int integer value.
float 32-hit float value.
string 80 character string (null terminated).

There are three different tables in which a variable can be declared: local,
global and extern. A local variable is known inside a function, a global is
known in all functions in a file (with include-files), an external is known
for all files executed in a session.

Datatype conversions

If an expression consists of variables and functions of different datatypes

the variables will be converted with the precedence string, float, int. If

two operands in an expression is of type int and float, the result will be float

If two operands is of type float and string, or int and string, the result will

be string. In an assignment the value of an expression will be converted to the
type of the assignment variable, even if the result is a string and the

variable is of type float or int.

Example

30.4

30.5

string str;

i nt i = 35;

str = "Luthor" + i;

The value in str will be "Luthor35".

fl oat f;

string str = "3.14";
i nt i = 159;

f =str +1i;

The value in f will be 3.14159.

Variable declarations

A variable must be declared before it is used.

A declaration consists of

- the table (global or extern, if local the table is suppressed)

- the datatype (int, float or string)

- the variable name (case sensitive)

- if array, number of elements

- equal mark followed by an init value, if omitted the init value is zero or
null-string

- semicolon

An extern variable should be deleted (by the delete statement).
Global variables can also be deletet with the deletegbl statement.

Example

i nt [

fl oat flow = 33.4;

string str = "Hell o";

fl oat width[5] = (1.20, 2.44, 4.81, 7.77, 9.20);
extern int j akob[20];

gl obal fl oat ferdi nand = 1234;

del et e jakob[20];
del et egbl ferdinand;

Namespace

Extern variables can be declared in different namespaces by setting the namespace with
set_namespace(). This can be used for running sets of scripts concurrently in the same
process. A set of script can handle common extern variables, and by using different
namespaces, the same set can be run in several instances without mix-up of the extern
variables.

Operators
The operators have the same function as i ¢, with some limitations. All

operators are not implemented. Some operators (+,=,==) can also operate on
string variables. Precedence of operators is similar to c.

Operator
+

*

/
++

>>
<<

Description

plus

minus

times

divide

increment, postfix only.
decrement, postfix only
bits right-shifted

bits left-shifted

less than

greater than

less equal

greater equal

equal

not equal

bitwise and

bitwise or

logical and

logical or

logical not

assign

add and assign

minus and assign
logical and and assign
logical or and assign

Datatypes

int, float, string
int, float

int, float

int, float

int, float

int, float

int

int

int, float

int, float

int, float

int, float

int, float, string
int, float, string
int

int

int

int

int

int, float, string
int, float

int, float

int

int

30.6 Script statements

main-endmain
function-endfunction
if-else-endif
while-endwhile
for-endfor

break

continue

goto

include

Main function.

Function declaration.
Conditional execution.
While loop.

For loop.

Terminate while or for loop.
Continue while or for loop.
Jump to label.

Include script file.

30.6.1 main-endmain

The main and endmain statements controls where the execution starts and stops
If no main and endmain statements will be found, the execution will start
att the beginning of the file and stop at the end.

Example

mai n()
int a;

a =pl +5;
printf("a = %", a);
endmai n

30.6.2 function-endfunction

A function declaration consists of

- the datatype of the return value for the function

- the name of the function

- an argumentlist delimited by comma and surrounded by parenthesis. The
argumentlist must include a typedeclaration and a name for each argument.

The arguments supplied by the caller will be converted to the type of the

to the type declared in the argument list. If an argument is changed inside
the function, the new value will be transferred to the caller. In this way

it is possible to return other values then the return value of the function.

A function can contain one or several return statements. The return will hand
over the execution to the caller and return the supplied value.

Example

function float calculate flowmfloat a, float b)
float c;
c =a+ b;
return c;

endf unction

flow = korr * calculate flow v, 35.2);

30.6.3 If-else-endif

The lines between a if-endif statement will be executed if the expression

in the if-statement is true. The expression should be surrounded by parentheses.
If an else statement is found between the if and endif the lines between else

and endif will be executed if the if-expression is false.

Example

if (i <10 && i > 5)

a=>b+ c;
endi f
if (i <10
a=>b + c;
el se
a=>b- c;

endi f

30.6.4 while-endwhile

The lines between a while-endwhile statement will be executed as long as the
expression in the while-statement is true. The expression should be surrounded
by parentheses.

Example
while (i < 10)

i ++;
endwhi | e

30.6.5 for-endfor

The lines between a for-endfor statement will be executed as long as the
middle expression in the for-statement is true. The for expression consists
of three expression, delimited by semicolon and surrounded by parentheses.
The first expression will be executed the before the first loop, the third

will be executed after every loop, the middle is executed before every loop
and if it is true, another loop is done, if false the loop is leaved

Example
for (i =0; i < 10; i++)

a += b;
endf or

30.6.6 break

A break statement will search for the next endwhile or endfor statement
continue the execution at the line after.

Example

for (i =0; i < 10; i++)
a += b;
if (a> 100)
br eak;
endf or

30.6.7 continue

A continue statement will search for the previous while or for statement
continue the loop execution.

Example
for (i =0; i < 10; i++)
= ny_function(i);
f (b > 100)

continue;

a += b;
endf or

r
b
i

30.6.8 goto

A goto will cause the execution to jump to a row defined by label.
The label line is terminated with colon.

Example

b = attribute("MOTOR-ON. Act ual Val ue", sts);
if (!sts)
goto some_error;

SOme_error:
say(" Somet hi ng went wong!");

30.6.9 include

An script include-file containing functions can be included with the
#include statement. The default file extention is ".pwr_com’

Example

#i ncl ude <ny_functions>

30.7 Input/Output functions

Function Description

ask Print a question an read an answer.
printf Formatted print.

say Print a text.

scanf Formatted read.

30.7.1 ask()

int ask(string question, (arbitrary type) reply)
Description

Prompts for input with supplied string.
Returns number of read tokens, 1 or 0.

Arguments

string guestion Prompt.

arbitrary type reply Entered reply. Can be int,
float or string.

Example

string reply;

ask("Do you want to continue? [y/n] ", reply);
if (reply !'="y")
exit();

endi f

30.7.2 printf()

int printf(string format [, (arbitrary type) argl, (arbitrary type) arg2])
Description

Formatted print. C-syntax. Format argument and non, one or two value arguments.
Returns number of printed characters.

Arguments

string format Format.

arbitrary type argl Value argument. Optional. Can be int,
float or string.

arbitrary type arg2 Value argument. Optional. Can be int,
float or string.

Example

printf("Watch out!");
printf("a = %", a);
printf("a = %l and str = %", a, str);

30.7.3 say()

int say(string text)

Description

Prints a string.

Arguments

string text Text to print.

Example
say("Three quarks for Muster Mark!");

30.7.4 scanf()

int scanf(string format , (arbitrary type) argl)
Description

Formatted input. C-syntax.
Returns number of read characters.

Arguments

string format Format.

arbitrary type argl Value argument. Returned. Can be int,
float or string.

Example

scanf ("%", i);

30.8 Input/Output functions

Function

fclose

felement

fgets

file_search

fopen

fprintf

fscanf
translate_filename

Description

Close a file

Extract one element from the last read line.
Read a line from a file.

Search for files.

Open a file.

Formatted write to file.

Formatted read from file.

Replace environment variables in a file name.

30.8.1 fclose()

int fclose(int file)

Description

Closes an opened file.

Arguments

int file file-id returned by fopen.
Example

int infile;
infile = fopen("some_file.txt","r");

fclose(infile);

30.8.2 felement()

string felement(int number, string delimiter)
Description

Extracts one element from a string of elements read from a file with the
fgets() function. felement() can be used in favour of element() when the read
string is larger than the string size 256. felement() can parse lines up to
1023 characters.

Arguments

int number the number of the element.
string delimiter delimiter character.
Returns

string The extracted element.
Example

string el em;
int file;
string |ine;

file = fopen("ny file.txt", "r");
while(fgets(line, file))

eleml = felenment(1, " ");
endwhi | e

30.8.3 fgets|()

int fgets(string str, int file)
Description

Reads a line from a specified file.
Returns zero if end of file.

Arguments

string str Read line. Returned.
int file file returned by fopen.
Example

file = fopen("sone_file.txt","r");
while(fgets(str, file))
say(str);
endwhi | e
fclose(file);

30.8.4 file_search()

int file_search(string pattern, string found_file, int pass)
Description

Search for files.

A pattern with wildcard can be specified to search for several files.
The search sequence is divided in the passes init, next and end.
At the first call pass init (1) is specified. At search of more

files with the same patter the pass next (1) is specified. The
search is closed with the pass end (2).

Returns odd status if a file is found, else even status.

Arguments
string pattern Name of file to search for. Can contain wild card (*").
string found_file Found file.
int pass Pass. Init (1), next (0) or end (2).
Example
string pattern = "*.txt";
string found_file;
int sts;

sts = file_search(pattern, found file, 1);
while (sts & 1)
printf("Processing %\n", found file);

sts = file_search(pattern, found file, 0);
endwhi | e
file _search(pattern, found file, 2);

30.8.5 fopen()

int fopen(string filespec, string mode)
Description

Opens a file for read or write.
Returns a file identifier. If the file could not be opened, zero is returned.

Arguments
string filespec Name of file.
string mode Access mode
Returns
int File identifier, or zero on error.
Example
int infile;

int outfile;

infile = fopen("sone_file.txt","r"
outfile = fopen("another_file.txt","w');
fclose(infile);

fclose(outfile);

30.8.6 fprintf()

int fprintf(int file, string format [, (arbitrary type) arg1l,
(arbitrary type) arg2])

Description
Formatted print on file. C-syntax. Format argument and non, one or two value

arguments.
Returns number of printed characters.

Arguments

int file File id returned by fopen.

string format Format.

arbitrary type argl Value argument. Optional. Can be int,
float or string.

arbitrary type arg2 Value argument. Optional. Can be int,
float or string.

Example

int outfile;
outfile = fopen("ny_file.txt", "w');
if (loutfile)

exit();
fprintf(outfile, "Sone text");
fprintf(outfile, "a = %", a);
fclose(outfile);

30.8.7 fscanf()

int fscanf(int file, string format , (arbitrary type) argl)

Description

Formatted read from file. C-syntax.
Returns number of read characters.

Arguments
int file
string format
arbitrary type argl
Example

int file;

int i;

file = fopen("ny_file. txt"

if (file)

fscanf(file, "%",

fclose(file);
endi f

3

"ry

File id.

Format.

Value argument. Returned. Can be int,
float or string.

30.8.8 translate filename()

string translate_filename(string fname)
Description

Replace environment variables in filename.

Arguments

string fname A filename.

Returns

string String with expanded env variables.
Example

string fnamel = "$pw p_db/a. wbo_| oad";
string fname2;
fnane2 = translate fil enane(fnamel);

30.9 String functions

Function
edit
element
extract
sprintf
strchr
strrchr
strlen
strstr
tolower
toupper

Description

Remove superfluous spaces and tabs.

Extract one element from a string.

Extract a substring from a string.

Formatted print to a string.

Return the first occurence of a character in a string.
Return the last occurence of a character in a string.
Calculate the length of a string.

Return the first occurence of a substring in a string.
Convert string to lower case.

Convert string to upper case.

30.9.1 edit()

string edit(string str)

Description

Removes leading and trailing spaces and tabs, and replaces multiple tabs and
spaces with a single space.

Returns the edited string.

Arguments

string str string to be edited.

Example

col l apsed_str = edit(str);

30.9.2 element()

string element(int number, string delimiter, string str)
Description

Extracts one element from a string of elements.
Returns the extracted element.

Arguments
int number the number of the element.
string delimiter delimiter character.
string str string of elements.
Example

string str = "mary, lisa, anna, john";

string el emt;
eleml = elenent(1, ",", str);

30.9.3 extract()

string extract(int start, int length, string str)
Description

Extracts the specified characters from the specified string.
Returns the extracted characters as a string.

Arguments
int start start position of the first character.
First character has position 1.
int length number of characters to be extracted.
string str string from which characters should be extracted.
Example

extracted _str = extract(5, 7, str);

30.9.4 sprintf()

int sprintf(string str, string format [, (arbitrary type) argl, (arbitrary type) arg2])
Description

Formatted print to buffer. C-syntax. Format argument and non, one or two value arguments.
Returns number of printed characters.

Arguments
string str String to print to.
string format Format.
arbitrary type argl Value argument. Optional. Can be int,
float or string.
arbitrary type arg2 Value argument. Optional. Can be int,
float or string.
Example
string str;
int itens;

sprintf(str, "Nunber of itens: %", itens);

30.9.5 strchr()

int strchr(string str, string c)
Description

Return the first occurence of a character in a string.

Arguments
string str String to search in.
string c Character to search for.
Returns
int Index for first occurence of character.
First character has index 1. Returns
zero if the character is not found.
Example
string str = "index.htm";
int idx;

idx = strchr(str, ".");

30.9.6 strrchr()

int strrchr(string str, string c)

Description

Return the last occurence of a character in a string.

Arguments

string str
string c

Returns
int
Example

string str = "/usr/local/pwrt";
int idx;

idx = strrchr(str, "/");

String to search in.
Character to search for.

Index for last occurence of character.
First character has index 1. Returns
zero if the character is not found.

30.9.7 strlen()

int strlen(string str, string c)

Description

Calculates the length of a string.

Arguments

string str String to calculate length for.

Returns
int Length of string.

Example

string str = "/usr/local/pwrt";
int |len;

len = strlen(str);

30.9.8 strstr()

int strstr(string str, string substr)

Description

Return the first occurence of a substring in a string.

Arguments

string str
string substr

Returns
int
Example

string str = "index.htm";
int idx;

idx = strstr(str, ".htm");

String to search in.
Substring to search for.

Index for first occurence of substring.
First character has index 1. Returns
zero if the substring is not found.

30.9.9 toupper()

string toupper(string str)
Description

Convert string to upper case.
Arguments

string str String to convert.

Returns
string String in upper case.

Example

string strl = "Buster WIson";
string str2;
str2 = toupper(str);

30.9.10 tolower()

string tolower(string str)
Description

Convert string to lower case.
Arguments

string str string to convert.

Returns
string string in lower case.

Example

string strl = "Buster WIson";
string str2;
str2 = tolower(str);

30.10 System functions

Function

exit
get_namespace
set_namespace
system
terminate

time

tzset

verify

Description

Exit script.

Get current namespace.

Set namespace for extern variables.
Execute shell command.

Terminate the process.

Get system time.

Set time zone.

Print executed lines.

30.10.1 exit()

int exit()

Description

Terminates executions of the file.
Example

exit();

30.10.2 get _namespacel()

string get_namespace()
Description
Returns the current namespace.

Returns
string Current namespace.

Example

string current_nanespace;
current _nanespace = get nanespace();

30.10.3 set_namespace()

set_namespace(string namespace)

Description

Set namespace for extern variables.

The maximum size of the namespace is 31 characters. If the length of the input string
exceeds the maximum size, the last 31 characters of the string is used.

Arguments

string namespace New namespace.

Example

set _nanespace(pl);

30.10.4 system()

int system(string cmd)
Description

Execute a shell command.

Arguments
string cmd Shell command to execute.
Returns
int The return value is -1 on error and the
return status of the command otherwise.
Example
string cnd;
cmd = "firefox http://ww. provi ew. se";

system(cnd);

30.10.5 terminate()

int terminate()
Descriptions

Terminate the process.

30.10.6 time()

string time()

Description

Returns the current time in string format.
Example

string t;
t =time();

30.10.7 tzset()

string tzset(string timezone)
Description

Set time zone.

Example

tzset (" Eur ope/ St ockhol m') ;

30.10.8 verify()

int verify([int mode])

Description

Sets or shows verification mode. If verification is on all executed lines will

be displayed on the screen.

Returns the current verification mode.

Arguments

int mode verification on (1) or off (0). Optional.

Example

verify(1);

30.11 Database functions

Function
GetAttribute()
GetChild()
GetParent()
GetNextSibling()
GetNextVolume()
GetClassList()
GetNextObject()
GetClassListAttrRef()
GetNextAttrRef()
GetTemplateObject()

Description

Get attribute value.

Get object child.

Get object parent.

Get object sibling.

Get next volume.

Get first instance of a class.

Get next instance of a class.

Get first instance of a class, attribute objects included.
Get next instance of a class, attribute objects included.
Get the template object for a class.

GetNextTemplateAttrRef(et the next instance in a template object .

GetObjectClass()
GetNodeObject()
GetRootList()
GetVolumeClass()
GetVolumelList()
SetAttribute()
CreateObiject()
RenameObiject()
MoveObject()
InLib()
OpenPlcPgm()
ClosePlcPgm()
CreatePlcObject()
CreatePlcConnection()
SetPIcObjectAttr()
PlcConnect()

Get class of an object.

Get node object.

Get first object in root list.
Get class of a volume.

Get fist volume.

Set attribute value.

Create an object.

Change name of an object.
Move an object.

Check if an object is in a $LibHier.
Open a PlcPgm.

Close a PlcPgm.

Create a plc object.

Create a plc connection.
Set attribute in a plc object.
Connect a plc object.

30.11.1 GetAttribute()

(variable type) GetAttribute(string name [, int status])
Description

Get the value of the specified attribute. The returned type is dependent
of the attribute type. The attribute will be converted to int, float or string.

Arguments
string name name of the attribute to be fetched.
int status status of operation. Returned. If zero, the
attribute could not be fetched. Optional.
Example
int alarm
int sts;

alarm= GetAttribute("Roller-Mtor-Al arm Actual Val ue");
on = GetAttribute("Roller-Mtor-On. Actual Val ue", sts);
if (!sts)

say("Could not find nmotor on attribute!");

30.11.2 GetChild()

string GetChild(string name)

Description

Get the first child of an object. The next children can be fetched with
GetNextSibling().

Returns the name of the child. If no child exists a null-string is returned
Arguments

string name name of object.
Example

string child;

child = GetChild("Roller-Mtor");

30.11.3 GetParent()

string GetParent(string name)
Description

Get the parent of an object.
Returns the name of the parent. If no parent exists a null-string is returned.

Arguments
string name name of object.
Example

string parent;

parent = GetParent("Roller-Mtor"),;

30.11.4 GetNextSibling()

string GetNextSibling(string name)
Description

Get the next sibling of an object.
Returns the name of the sibling. If no next sibling exists a null-string is
returned.

Arguments
string name name of object.
Example

string nane;
int not _first;

nane = GetChild("Rt");
not first = O;
while (name I'="")
if (!'not_first)
create nmenu/title="The Rt objects"/text="'nane'"/object=""nanme""
el se
add nenu/text="'nane'"/object=""nane'"
endi f
not first = 1;
nanme = Get Next Si bl i ng(nnane) ;
endwhi | e
if (!'not_first)
MessageError (" No objects found");

30.11.5 GetClassList()

string GetClassList(string class)

Description

Get the first object of a specified class. The next object of the class

can be fetched whith GetNextObject().

Returns the name of the first object. If no instances of the class exists a
null-string is returned.

Arguments

string name name of class.
Example

string nane;

nane = GetC assList("Dv");

30.11.6 GetNextObject()

string GetNextObject(string name)
Description
Get the next object in a classlist.
Returns the name of the object. If no next object exist a null-string is
returned.
Arguments
string name name of object.
Example

string nane;

nane = GetC assList("D");

while (name !'="")

printf("D object found: %", nane);

nanme = Get Next Cbj ect (name);
endwhi | e

30.11.7 GetClassListAttrRef()

string GetClassListAttrRef(string class)

Description

Get the first object or attribute object of a specified class. The next object
or attribute object of the class can be fetched whith GetNextAttrRef().
Returns the name of the first object. If no instances or attribute object of the
class exists a null-string is returned.

Arguments

string name name of class.

Example

string nane;

nane = GetC assListAttrRef ("Dv");

30.11.8 GetNextAttrRef()

string GetNextAttrRef(string class, string name)
Description
Get the next object or attribute object in a classlist.

Returns the name of the object or attribute object . If no next
object exist a null-string is returned.

Arguments

string class name of class.

string name name of object or attribute object.
Example

string nane;

nane = GetC assListAttrRef ("D ");
while (name I'="")
printf("D object found: %", nane);
nane = GetNextAttrRef("Di ", name);
endwhi | e

30.11.9 GetTemplateObject()

string GetTemplateObject(string class)
Description
Get the template object of a specified class.
Arguments
string name name of class.
Example
string nane;

nane = Get Tenpl at eObj ect ("Dv");

30.11.10 GetNextTemplateAttrRef()

string GetNextTemplateAttrRef(string class, string name)
Description
Get the next attribute object of the specified class in a template object. Returns

the name of the attribute object. If no next object exist a null-string is returned.
The first template object is fetched with GetTemplateObject().

Arguments

string class name of class.

string name name of template object or template attribute object.
Example

string nane;

nane = Get Tenpl ateGbject("Di");
while (name I'="")

printf("D object found: %", nane);

nane = Get Next Tenpl ateAttrRef("Di ", name);
endwhi | e

30.11.11 GetObjectClass()

string GetObjectClass(string name)
Description

Get the class of an object.
Returns the name of the class.

Arguments
string name name of object.
Example

string class;

class = CGet Obj ect d ass(" Mt or - Enabl e");

30.11.12 GetNodeObject()

string GetNodeObiject()
Description

Get the node object.
Returns the name of the node object.

Example

string node;
node = Get NodeObj ect ();

30.11.13 GetRootList()

string GetRootList()
Description

Get the first object in the root list.

Returns the name of the root object. The next object in the root list can be
fetched with GetNextSibling().

Example
string nane;

nane = Get Root List();

while(name !'="")
printf("Root object found: %", nane);
nane = Get Next Si bl i ng(nane);

endwhi | e

30.11.14 GetNextVolume()

string GetNextVolume(string name)

Description

Get the next volume. The first volume is fetched widh GetVolumeList().
Returns the name of the volume. If there is no next volume, a null-string
is returned.

Argument

string name name of volume.

30.11.15 GetVolumeClass()

string GetVolumeClass(string name)
Description

Get the class of a volume.
Returns the classname.

Argument
string name volume name.
Example

string class;

class = Get Vol umed ass(" CVol VKVDKR") ;

30.11.16 GetVolumelList()

string GetVolumelList()
Description

Get the first volume in the volumelist.
Returns the name of the volume. The next volume will be fetched with
GetNextVolume().

Example
string nane;

nane = Get Vol uneLi st();

while(name !'="")
printf("Volume found: %", nane);
nane = Get Next Vol unme(nane) ;

endwhi | e

30.11.17 SetAttribute()

int SetAttribute(string name, (arbitrary type) value)
Description

Set the value of an attribute.

The attribute is specified with full object and
attribute name.

Returns the status of the operation.

Argument

string name attribute name.
arbitrary type value attribute value.
Example

Set Attribute("Punp-V1-Sw tch. Description”, "Valve switch open");

30.11.18 CreateObject()

int CreateObject(string name, string class, string destination, int destcode)

Description

Create an object.
Returns the status of the operation.

Argument

string name
string class
string destination
int destcode
Example

Creat ebj ect ("Tenperature"

object name. Without path.

object class.

destination object. A father or sibling to the object.
destination code. 1 first child, 2 last child,

3 after, 4 before.

, "BaseTenpSensor", "Punp-V1i", 2);

30.11.19 RenameObject()

int RenameObject(string name, string newname)
Description

Change the name of an object.
Returns the status of the operation.

Argument

string name old name with path.
string newname new name without path.
Example

Renamevj ect ("Hl- Zonl- Tenp2", "PT2");

30.11.20 MoveObject()

int MoveObiject(string name, string destination, int destcode)
Description

Move an object.
Returns the status of the operation.

Argument

string name name with path.

string destination destination object. A father or sibling to the object
in the new position.

int destcode destination code. 1 first child, 2 last child,
3 after, 4 before.

Example

MoveQbj ect ("H1- Zonl- Tenp2", "HL1-Zon2", 1);

30.11.21 InLib()

int InLib(string name)
Description

Check if an object is in a library hierarchy.
Returns 1 if itis in a library hierarchy, else 0.

Argument

string name object name with path.

Returns

int 1 if the object is in a library
hierarchy, else 0.

Example

if ('InLib("HL-Mtor"))

endi f

30.11.22 OpenPlcPgm()

int OpenPlcPgm(string name)

Description

Open a plc program and a plc editing session.

Returns the status of the operation.

There should not be any unsaved operations when this function is called.
Only one program can be opened concurrently.

The plc editing session should be closed with a call to ClosePlcPgm().
In the plc editing session only the plc functions CreatePlcObject(),
CreatePlcConnection(), SetPlcObjectAttr() and PlcConnect() should be
used to manipulate and create objects. Access for the previous session
is temporary set to readonly when the plc editing is active.

Argument

string name name of PlcPgm object.

Example

QpenPl cPgm(" Punp- V1-Control ");

Cl osePl cPgm() ;

30.11.23 ClosePlcPgm()

int ClosePlcPgm()
Description
Closes a plc editing session.
Example
QpenPl cPgn(" Punp- V1- Control ");

C osePl cPgn() ;

30.11.24 CreatePlcObject()

int CreatePlcObject(string name, string class, float x, float y [, string destination,
int inputmask, int outputmask, int invertmask])

Description

Creates a plc function object in a plc editing session.
The function can only be used in a plc editing session started with a call to
OpenPlcPgm().

The object is positioned on the coordinates x and y. If destination, a document object,
is supplied, the coordinates are relative to this object, otherwise they are absolute.
If the masks are left out the default masks are used.

Argument

string name Object name. Without path.

string class Object class.

float X x coordinate.

float y y coordinate.

string destination Optional. A document object. If supplied the coordinates
are relative to this object.

int inputmask Optional. Mask where the bits indicate visible input pins
in the function block.

int outputmask Optional. Mask where the bits indicate visible output pins
in the function block.

int invmask Optional. Mask where the bits indicate inverted input pins.

Example

QpenPl cPgn(" Punp-V1-Control");

Creat ePl cObj ect ("Docunent 0", "Docurent", 1.2, 0.0);

CreatePl cbj ect ("And0", "And", 0.3, 0.1, "DocunentQ", 15, 1, 3);
CreatePl cObject("V1", "BaseCvalve", 0.3, 0.4, "DocumentQ");

Cl osePl cPgm() ;

30.11.25 CreatePlcConnection()

int CreatePlcConnection(string source, string sourceattr, string dest, string destattr [,
int feedback])

Description

Creates a plc connection between the source function object and the destination
function object.

The function can only be used in a plc editing session started with a call to
OpenPlcPgm().

The pins to connect to are specified by the attributes names of the pins. If a
dashed feedback connection is to be created, this can be stated with the optional
feedback argument.

Argument

string source Source object name. Without path.

string sourceattr Attribute for pin on the source object.

string dest Destination object name. Without path.

string destattr Attribute for pin on the destination object.

int feedback Optional. If 1 a dashed feedback connection is created.
Example

OpenPl cPgm(" Punp-V1-Control ");

CreatePl cObj ect("And0", "And", 0.3, 0.1, "DocumentO", 15, 1, 3);
CreatePl cObj ect("Andl", "And", 0.6, 0.1, "DocunmentO", 15, 1, 3);

Creat ePl cConnection("And0", "Status", "Andl", "Inl");
Feedback connection
Creat ePl cConnection("Andl", "Status", "AndO0", "In4", 1);

Cl osePl cPgm() ;

30.11.26 PlcConnect()

int PlcConnect(string plcobject, string connectobject)
Description

Activates the plc connect function, for example to connect Get and Sto function objects to
signals and attributes in the plant hierarchy.

The function can only be used in a plc editing session started with a call to

OpenPlcPgm().

Argument

string plcobject Name, without path, of plc function object that should
be connected.

string connectobject Name of object or attribute to connect to.
Full name with path.

Example

OpenPl cPgm(" Punp-V1-Control ");

CreatePl cObject("GetDv0", "GetDv", 0.3, 0.1, "DocunmentQ");
Pl cConnect (" Get Dv0", "Punp-V1-Active");

Cl osePl cPgm() ;

30.11.27 SetPlcObjectAttr()

int SetPlcObjectAttr(string attribute, (arbitrary type) value)
Description
Set a value in a plc object.

The function can only be used in a plc editing session started with a call to

OpenPlcPgm().

Argument

string name attribute name. Without path.
arbitrary type value attribute value.

Example

QpenPl cPgm(" Punp-V1-Control");

Creat ePl cObj ect ("Docunent 0", "Docurent", 1.3, 0.0);
Set Pl cObj ect Attr("Docunment 0. Docunent Ori entation”, 1);
Set Pl cObj ect Attr("Docunent 0. Docunent Si ze", 3);

Cl osePl cPgm() ;

Function
GetProjectName()

CheckSystemGroup()

CutObjectName()
MessageError()
Messagelnfo()
GetCurrentText()
GetCurrentObject()

GetCurrentVolume()

ISW1()

ISW2()
EditMode()
MessageDialog()
ConfirmDialog()
ContinueDialog()
PromptDialog()
OpenGraph()
CloseGraph()
SetSubwindow()
GetVersion()
get_pwr_config()
get_node_name()
getmsg()

EVEN()

ODD()

30.12 Miscellaneous functions

Description

Get project name.

Check that system group exist.
Cut off an object name.

Print error message.

Print info message.

Get the text of the current item.
Get the object associated with the current item.
Get the attached volume.

Check if Plant hierarchy has focus.
Check if Node hierarchy has focus.
Check if in edit mode.

Open a message dialog.

Open a confirm dialog.

Open a Continue/Quit dialog.
Open an input dialog.

Open a Ge graph.

Close a Ge graph.

Open a graph in a window object.
Get ProviewR version.

Get configuration values.

Get node name.

Get status text.

Check if value is even.

Check if value is odd.

30.12.1 GetProjectName()

string GetProjectName()
Description

Get the project name.
Returns the name of the project.

Example
string nane;

nane = Get Proj ect Nane();

30.12.2 CheckSystemGroup()

int CheckSystemGroup()
Description

Check if a system group exists.
Returns 1 if the system group exist, else 0.

Example
if (!CheckSystenG oup("MyGoup"))

return;
endi f

30.12.3 CutObjectName()

string CutObjectName(string name, int segments)
Description
Cut the first segments of an object name.

Returns the last segments of an object name. The number of segments left is
specified by the second argument

Arguments

string name Path name of object.

int segments Number of segments that should be left.
Example

string path_nane;
string object nane;

path_name = Get Chil d("Rt-Mtor");
obj ect _name = Cut Obj ect Nane(pat h_nane, 1);

30.12.4 MessageError()

string MessageError(string message)
Description

Print an error message on the screen.
Example

MessageEr ror (" Sonet hi ng went wrong");

30.12.5 Messagelnfo()

string Messagelnfo(string message)
Description

Print an rtt info message on the screen.
Example

Messagel nfo("Everything is all right so far");

30.12.6 GetCurrentText()

string GetCurrentText()
Description
Get the text of the current menu item or update field.
Example
string text;

text = GetCurrent Text();

30.12.7 GetCurrentObject()

string GetCurrentObiject()
Description

Get the object associated with the current menu item.
If no object is associated, a null-string i returned.

Example
string object;

obj ect = GetCurrent Qbject();

30.12.8 GetCurrentVolume()

string GetCurrentVolume()
Description

Get the attached volume.
If no volume is attached, a null-string i returned.

Example
string current_vol une;

current _vol ume = Get Current Vol une();
set vol unme/ vol ume=SonmeQ her Vol une

set vol une/vol ume=' current _vol une'

30.12.9 IsW1()

int ISW1()
Description

Returns 1 if the current focused window in wtt is the Plant hierarchy window.
Otherwise returns 0.

30.12.10 IsW2()

int IsSW2()
Description

Returns 1 if the current focused window in wtt is the Node hierarchy window.
Otherwise returns 0.

30.12.11 EditMode()

int EditMode()
Description

Returns 1 if wtt is int edit mode.
Otherwise returns 0.

30.12.12 MessageDialog()

MessageDialog(string title, string text)
Description

Display a message dialog box.

Arguments

string title Title.

string text Message text.
Example

MessageDi al og("Message", "This is a message");

30.12.13 ConfirmDialog()

int ConfirmDialog(string title, string text [, int cancel])

Description

Display a confirm dialog box.
Returns 1 if the yes-button is pressed, 0 if the no-button i pressed.
If the third argument (cancel) is added, a cancel-button is displayed.
If the cancel-button i pressed or if the dialogbox is closed,

the cancel argument is set to 1.

Arguments
string title
string text
int cancel
Example 1
if (! Confirnbhialog("Confirnt,

printf("Yes is pressed\in");
el se

printf("No is pressed\n");
endi f

Example 2

int cancel;
int sts;

sts = ConfirnDi al og("Confirn,

if (cancel)
printf("Cancel
exit();

endi f

is pressed\n);

if (sts)

printf("Yes is pressed\n");
el se

printf("No is pressed\n");
endi f

Title.

Confirm text.

Optional. A cancel button is displayed.
Cancel is set to 1 if the cancel-button is
pressed, or if the dialog-box is closed.

"Do you really want to..."))

"Do you really want to...",

cancel);

30.12.14 ContinueDialog()

ContinueDialog(string title, string text)
Description

Display a message dialog box with the buttons ‘Continue' and 'Quit'.
Returns 1 if continue is pressed, 0 if quit is pressed.

Arguments

string title Title.

string text Message text.
Example

if (! ContinueDi al og("Message", "This script will..."

exit();
endi f

30.12.15 PromptDialog()

int PromptDialog(string title, string text, string value)
Description
Display a prompt dialog box which promps for a input value.

Returns 1 if the yes-button is pressed, 0 if the cancel-button i pressed,
or if the dialogbox is closed.

Arguments

string title Title.

string text Value text.

string value Contains the entered value.
Example

string nane;

if (PronptDial og("Name", "Enter nanme", name))
printf("Name : '%'\n", nane);

el se
printf("Cancel...\n");

endi f

30.12.16 OpenGraph()

int OpenGraph(string name, int modal)
Description
Open a Ge graph.

If modal is selected, the execution of the script is continued when
the graph is closed.

Arguments

string name Graph name.
int modal Modal.
Example

penG aph("pw _w zard_frame", 0);

30.12.17 CloseGraph()

int CloseGraph(string name)

Description

Close a Ge graph.

Arguments

string name Graph name.
Example

Cl oseG aph("pw _wi zard_franme");

30.12.18 SetSubwindow()

int SetSubwindow(string name, string windowname, string source, int modal)

Description

Open a Ge graph in a window object in a previously opened graph.
If modal is selected, the execution of the script is continued when
the command 'release subwindow' is executed by a pushbutton in the graph.

Argument

string
string

string

int
Example

Set Subwi ndow(

name
windowname

source

modal

"pw_w zard_frame",

Name of the main graph.

Name of the window object in which
the source graph is to be opened.
Name of the graph that is to be opened
in the window object.

Modal.

"W ndowl", "MG aph", 1);

30.12.19 GetVersion()

int GetVersion()

Description

Get the ProviewR version for the current release.

Returns an integer value that is 10000 * major + 100 * minor + release.
For example V5.3.1 returns 50301.

Example

if (GetVersion() > 50300)
Only for versions larger than V5.3.0

endi f

30.12.20 get_pwr_config()

string get_pwr_config(string name)
Description

Get the value of a configuration variable.
Configuration values are set in /etc/proview.cnf.
Returns the value of the configuration variable.

Example

group = get_pw _config("defaultSystenmaoup");

30.12.21 get_node_name()

string get_node_name()
Description

Get the host name for the current node.
Returns the host name.

Example

nane = get_node_nane();

30.12.22 getmsg()

string getmsg(int status)
Description

Get the corresponding text for a status variable.
Returns the text.

Example

msg = getnmsg(sts);

30.12.23 EVEN()

int EVEN(int sts)
Description

Check is an integer is even.
Returns 1 if even and 0 if odd.

Example

sts = SetAttribute("Punp-V1-Swi tch. Description”, "Valve switch open");
if (EVEN(sts))

printf("Couldn't set attribute\n");
endi f

30.12.24 ODD()

int ODD(int sts)
Description

Check is an integer is odd.
Returns 1 if odd and O if even.

Example

sts = SetAttribute("Punp-V1-Swi tch. Description”, "Valve switch open");
if (ODD(sts))

printf("Set operation successful\n");
endi f

30.13 Wtt commands

All the witt-commands is available in the script code. An wtt-command line
should NOT be ended with a semicolon. Variables can be substituted in the
command line by surrounding them with apostrophes.

Example

string nane = " PUWP- VALVE- Open";
string value = "The valve is open”;
set attribute/ name='nane'/attr="Description"/val ue='val ue'

Example

string nane;
string parnane;

int j;

int i;

for (i =0; i < 3; i++4)
parname = "vkv-test-obj" + (i+1);
creat e obj/ name=' par nane'
for ()] =0; j <3; j+4)

nane = parnane + "-obj" + (j+1);
creat e obj/name=' nane'
endf or
endf or

	
	
	Introduction
	Overview
	Database structure
	Object
	Volumes
	Attribute
	Class
	Object Tree
	Object Name
	Mounting
	Object Identity

	A Case Study
	Specification of I/O
	Administration
	Plant Configuration
	Node Configuration
	PLC program
	Plant Graphics

	Create a project
	Directory Volume Configuration
	Configure a Root Volume
	Navigating the project
	Introduction
	The source tree
	$pwrp_login
	$pwrp_db
	$pwrp_pop
	$pwrp_appl
	$pwrp_doc
	$pwrp_cnf

	The build tree
	$pwrp_exe
	$pwrp_obj
	$pwrp_lis
	$pwrp_lib
	$pwrp_load
	$pwrp_log
	$pwrp_tmp
	$pwrp_inc
	$pwrp_web

	Special files
	Rt_xtt
	xtt_setup.rtt_com
	ld_appl_<node>_<bus_no>.txt
	plc_<node>_<bus_no>_<plc_name>.opt
	pwrp_alias.dat
	/etc/proview.cnf

	Graphical PLC Programming
	Call functions from the plc program
	Components and Aggregates
	A Component case study

	Alarms and events
	Alarms
	Info messages
	Events
	Supervision objects
	Event monitor
	Alarm blocking
	Suppression of alarms
	Outunits
	Alarm and event list in Xtt
	Alarm and event list in the web interface
	Event log
	History storage of events

	Communication
	Internal communication
	Remote
	Introduction
	Protocols
	UDP
	TCP
	RabbitMQ
	MQTT
	MQ
	Serial
	3964-R
	Modbus Serial
	Websphear MQ

	An example

	Data Storage
	Trends
	DsTrend
	DsTrendCurve

	Fast curves
	Historical data storage

	Application programming
	Attach to the database and handle object and data
	Console log
	Start the application
	Receive system events
	Baseclass for applications rt_appl
	Send alarms and messages
	Communicate with other processes
	Fetch data from a storage station
	I/O handling
	Thread safe strings and times
	Build an application
	Java applications

	Creating Process Graphics
	Web operator environment
	Starting and testing a ProviewR system
	Build
	Simulate
	Simulate Server

	Runtime Monitor
	Process and operator stations
	Distribute
	Bus identity
	Start the runtime environment

	The Configurator
	Object Editor
	Object Text Editor
	The Spreadsheet Editor
	Help window
	Message window
	Utilities
	Backup utility
	Build Directories
	Build Export and Import

	Plc Editor
	Helpfile
	Conversion
	Encoding
	Syntax
	Topic
	Bookmark
	Link
	Index
	Header1
	Header2
	Bold
	Code
	Tab
	Horizontal line
	Include
	Chapter
	Headerlevel
	Pagebreak
	Option
	Style
	Title page and document info
	Helpfile example
	Start and stop of engines.

	Users
	User database
	Example
	Login

	Class Editor
	Database structure
	Class description
	Type description
	Create classes
	Create a class volume
	Data classes
	Function object classes
	Function object with c code
	Function object with plc code

	I/O classes
	Components
	Main object
	Functionobject
	Simulation object
	I/O-module object
	Object graph
	Graphic symbol

	Build the classvolume
	Documentation of classes
	Generate Xtt helpfiles
	Generate html documentation
	ClassDef
	@Author
	@Version
	@Code
	@Summary
	@Link
	@Classlink
	wb_load syntax

	Attribute
	wb_load syntax

	Syntax for c- and h-files

	Administration
	Users
	Register Volumes
	Create project

	Revisions
	Tools
	pwrc
	co_help Help window
	wb_ge Ge editor
	pwr_user
	add
	add group
	add user

	get
	list
	load
	modify
	modify group
	modify user

	remove
	remove group
	remove user

	save
	su

	wb_ldlist

	OPC
	OPC XML/DA Server
	OPC XML/DA Client

	Commands
	Command build
	Command check classes
	Command close graph
	Command compile
	Command configure card
	Command connect
	Command copy
	Command copy object
	Command create bootfiles
	Command create crossreferencefiles
	Command create flowfiles
	Command create loadfiles
	Command create object
	Command create structfiles
	Command cut
	Command define
	Command delete object
	Command delete tree
	Command disconnect
	Command display
	Command distribute
	Command edit
	Command exit
	Command help
	Command generate web
	Command list
	Command list channels
	Command list descriptor
	Command list hierarchy
	Command list plcpgm
	Command list signals
	Command login
	Command logout
	Command move object
	Command new buffer
	Command one
	Command open buffer
	Command open graph
	Command paste
	Command print
	Command redraw
	Command release subwindow
	Command revert
	Command save
	Command search
	Command set advanceduser
	Command set alltoplevel
	Command set attribute
	Command set db
	Command set inputfocus
	Command set showalias
	Command set showattrref
	Command set showattrxref
	Command set showclass
	Command set showdescription
	Command set showobjref
	Command set showobjxref
	Command set subwindow
	Command set template
	Command set verify
	Command set window
	Command set volume
	Wtt setup
	Command show children
	Command show license
	Command show object
	Command show objid
	Command show script
	Command show symbol
	Command show version
	Command show volumes
	Command sort
	Command two
	Command update classes
	Command wb dump
	Command wb load
	Symbol

	Wtt script
	Execute a script
	Datatypes
	Datatype conversions
	Variable declarations
	Operators
	Script statements
	main-endmain
	function-endfunction
	if-else-endif
	while-endwhile
	for-endfor
	break
	continue
	goto
	include

	Input/Output functions
	ask()
	printf()
	say()
	scanf()

	Input/Output functions
	fclose()
	felement()
	fgets()
	file_search()
	fopen()
	fprintf()
	fscanf()
	translate_filename()

	String functions
	edit()
	element()
	extract()
	sprintf()
	strchr()
	strrchr()
	strlen()
	strstr()
	toupper()
	tolower()

	System functions
	exit()
	get_namespace()
	set_namespace()
	system()
	terminate()
	time()
	tzset()
	verify()

	Database functions
	GetAttribute()
	GetChild()
	GetParent()
	GetNextSibling()
	GetClassList()
	GetNextObject()
	GetClassListAttrRef()
	GetNextAttrRef()
	GetTemplateObject()
	GetNextTemplateAttrRef()
	GetObjectClass()
	GetNodeObject()
	GetRootList()
	GetNextVolume()
	GetVolumeClass()
	GetVolumeList()
	SetAttribute()
	CreateObject()
	RenameObject()
	MoveObject()
	InLib()
	OpenPlcPgm()
	ClosePlcPgm()
	CreatePlcObject()
	CreatePlcConnection()
	PlcConnect()
	SetPlcObjectAttr()

	Miscellaneous functions
	GetProjectName()
	CheckSystemGroup()
	CutObjectName()
	MessageError()
	MessageInfo()
	GetCurrentText()
	GetCurrentObject()
	GetCurrentVolume()
	IsW1()
	IsW2()
	EditMode()
	MessageDialog()
	ConfirmDialog()
	ContinueDialog()
	PromptDialog()
	OpenGraph()
	CloseGraph()
	SetSubwindow()
	GetVersion()
	get_pwr_config()
	get_node_name()
	getmsg()
	EVEN()
	ODD()

	Wtt commands

