
Developer's Guide

2024-01-17

Copyright © 2005-2024 SSAB EMEA AB

Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Table of Contents
About this manual ..5
Introduction..6
Source code...7

Fetch the source code...7
Tarball...7
Git repository..7

Source code tree...7
Modules...7

Kernel modules...7
Other modules..8

abb, siemens, ssabox, inor, klocknermoeller, telemecanique...8
Types...9
Components...9

Exe..9
Lib..10
Wbl...10
Msg...10
Exp..11
Mmi..11
Jpwr..11
Doc...11
Tools...11
Overview..11

Flavor..11
Gtk/qt..12
Language..12

Build tree..13
Module...13

Exe...13
Lib...13
Obj...14
Load..14
Inc..14
Doc..14

Exp...14
Bld..14

Build...16
Preparation...16
Pwre...17

Create directories in the build tree..18
Configure...18
Complete build..18
Build a component..18

Phase...19
Method dependent exe components..20
Build installation packages..20
Build new version..21

Projects..21
Demo project..21
Project pwrtest01..22
Project pwrtest02..22
Project pwrtest03..23

Docker build and test chain...23
Build with an import root..26
Build for embedded platforms...27

Configure an embedded project..28
Build operator environment only...29

Appendix A ...30
Component overview...30

Module rt...30
Module Xtt..32
Module Wb...32
Module Remote...32
Module Nmps..33
Module Profibus..33
Module Opc...34
Module Java..34
Module Otherio...34
Module Bcomp..34
Module Othermanu...35
Modules ABB, Siemens, Inor etc..35

About this manual

ProviewR Developer's Guide describes the structure of the ProviewR source code and how to build
the source.

The intended audience for this manual are persons that wants to build ProviewR from sources, on a
specific platform, or to make changes and additions to the functionality.

Introduction

The structure of the Proveiw source code three is made to be able to build on different hardware and
on different operating systems. The original design was made for VAXELN on VAX, OpenVMS on
VAX and Alpha, and LynxOS on x86 and PowerPC. All these platforms are now cut out and
replaced by Linux on x86 and x86_64.

The ProviewR source code is quite extensive, it contains about 800 000 lines, the most part in c and
c++, but also some java. In addition there are a number of other types of files for documentation,
help texts, class and object descriptions, object graphs, shellscripts etc.

To build ProviewR, implies that you from the source code tree creates build tree, where the result of
the building is placed. Parts of the build tree is then included in installation packages for
development, process, operator and storage stations.

The building is performed by a script, pwre, that calls a set of make files with general rules of how
to treat different types of files.

This guide is about how the source code is constructed, and how you use pwre to build it.

Source code

Fetch the source code
The source code is available on SourceForge as a tarball, and from a git repository.

Tarball
Download the tarball, for example pwrsrc_6.1.0-1.tar.gz. Unpack it with the command

tar -xzvf pwrsrc_6.1.0-1.tar.gz

Git repository
To download, or clone, a git repository, you first have to install git (git-core). Download the code
with the 'git clone' command, see the ProviewR homepage for more information (Development, Git
Repository).

Source code tree
The source code tree consists of at most 4 levels. The environment variable $pwre_croot points at
the root, and the different levels are

$pwre_croot/module/type/component/flavor

One example is

$pwre_croot/profibus/lib/rt/src

from which we can read that the module is profibus, i.e. a field bus. The type is lib (library),
that will create an archive. The component is rt, which will compose the archive name to
libpwr_rt.a that contains modules for runtime. On the directory src is placed source code for the
archive that is common for all operative systems and hardware.

Modules
The source code tree is divided in modules. These are located as directories beneath the root
directory. The modules consist of three kernel modules, rt, xtt and wb, that are essential for building
a runnable system. They are also mutually dependent on each other.

Kernel modules

Module Description
rt rt signifies RunTime, and are for historical reasons located under the directory src. It

contains all the basic functions in the runtime environment, e.g. the realtime database,
communication programs (qcom, nethandler, subscriptions), plc, event handling,
backup, system and base classes. In rt is also located most of the documentation, and

tools for building ProviewR.

xtt Xtt is located under the directory xtt, and contains code for the graphical interface fo
the operator environment, and graphical components for the plc editor and drawing of
process graphs.

wb Wb, WorkBench, contains code for the development environment, i.e. the development
database, the configurator, the plc editor, the class editor etc.

Other modules

Module Description
remote Code for communication over a number of different protocols: 3964R, Modbus,

MQ, RK512, TCPIP, UDPIP, ALCM and serial.

rmps A simple material handling system.

profibus I/O handling with the fieldbusses Profibus and Profinet.

opc Communication with other process control equipment over the OPC XML/DA
protocol.

java Java interface to the realtime database, process graphs and web interface etc.

otherio I/O systems that doesn't have it's own module, e.g. Modbus/TCP, Motion
Control USB I/O.

bcomp BaseComponent. A set of component and aggregate classes for different types
of valves, pumps, fans, motors, frequency converters, contactors, circuit
breakers etc.

project Contains the demo project and a number of projects for regression tests.

test Test utilites.

misc Miscellaneous features.

dataq Data queues module.

simul Functions for simulation.

othermanu Component classes for manufacturers that doesn't have a specific module.

abb, siemens,
ssabox, inor,
klocknermoeller,
telemecanique

Modules that contains classes for components and I/O units for a specific
manufacturer.

Types
The level below the module is called type, and denotes what type of component that is generated, for
example if it is an archive, and executable, a classvolume. The type can be exe, lib, wbl, msg, exp,
mmi, doc or tools.

Type Description

exe Exe is for executable and each component below the exe directory generates an exe-
file, i.e. an executable program that is placed in $pwr_exe in the build tree.

lib Lib is for library, and each component below the lib directory, generates an archive
with the name lib_pwr'component'.a, that is placed in $pwr_lib in the build tree.

wbl Wbl is for workbench loadfiles, that is files for description of object, usually class
definition objects describing classes. The objects in a component below wbl
constitutes a volume, and each component generates a dbs-file on $pwr_load.

msg Msg is for message and contains files for status codes (.msg). The division in
components corresponds to the archives.

exp Exp is for export, and contains source code that doesn't fit elsewhere.
mmi Mmi is equivalent to hmi, and contains files concerning the user interface, e.g.

language dependent files and various picture files, object graphs and subgraphs.
jpwr A type in the java module, where each component generates a java archive, named

pwr_'component'.jar, placed on $pwr_lib.
doc Documentation, help texts etc.
tools A type in the rt module that contains various files for building and maintenance of the

source code.

Components
The component level normally constitutes a specific unit, that is generated by the code in the
directories below the component level. Both source code files and build files are found there. The
component level can also be used as an hierarchy to collect files of similar nature.

Exe
For components of type exe, an executable program with a name that equals the component name, is
created. For example $pwr_croot/src/exe/rt_ini contains code and build files for the
program $pwr_exe/rt_ini. Below the komponent directory, there are a src directory containing
a number of c-files, rt_ini.c, ini.c, ini_rc.c and ini_loader.c, and some includefiles. rt_ini.c, that is
the file with the same name as the component name, contains the main function. The other c-files
are compiled and linked with the program.

In the src directory also link_rule.mk is located, that contains the link command for the
program. In case the build requires a specific makefile this is also located here, otherwise a genereic
makefile is used.

Lib
Lib components contains c and c++ files that are compiled and inserted into an archive. If we look
closer to the archive $pwre_croot/src/lib/rt, that contatins functions for ProviewR runtime, the main
part of the code is located in rt/src. The c-files are compiled and inserted into the archive
$pwr_lib/libpwr_rt.a, and the include files are copied to $pwr_inc.

Wbl
A wbl-component contains wb_load-files with object descriptions. These description generates a
volume containing object. Usually the generated volume is a class volume, but there are also some
examples of other types of volumes, a SharedVolume (rt) and a WorkbenchVolume (wb). From the
wb_load-files a dbs-file is generated on $pwr_load, and an h-file containing c structures for the
klasses, and an hpp-file containg c++ classes. Furthermore are help files and postscript-files for
documentation in Object Reference Manual generated.

If we look closer at $pwre_croot/wbl/pwrb, that contains the ProviewR baseclasses in the
classvolume pwrb. In the pwrb/src catalog, one wb_load file for each class in the volume are located,
for example pwrb_c_and.wb_load for the class And. There are also wb_load files for type
definitions, e.g. pwrb_td_yesnoenum.wb_load that is an enumeration type for yes/no. In
pwrb/src/os_linux/hw_x86 there is a makefile that generates the dbs-file $pwr_load/pwrb.dbs and
athe include-files $pwr_inc/pwr_baseclasses.h and $pwr_inc/pwr_baseclasses.hpp. Also the help-
files $pwr_exe/en_us/pwrb_xtthelp.dat and $pwr_exe/sv_se/pwrb_xtthelp.dat in english and swedish
are generated. In $pwr_doc/en_us/orm and $pwr_doc/sv_se/orm a set of html-files are placed for the
Object Reference Manual, and on $pwr_doc a postscript version of Object Reference Manual.

Another model of volume component is $pwre_croot/bcomp/wbl/bcomp. It contains only one
wb_load-file, basecomponent.wb_load, containing all types and classes in the volume
Basecomponent. The volume is edited by starting the class editor with the command

> wblstart.sh basecomponent

Otherwise the build is performed similar to the pwrb volume.

Msg
A msg component consist of a number of msg-files that contains status codes. A status code
constitutes of an integer value that can be translated to a single line text. The integer values are
defined by a #define state in an include file and can be used in the c code, and the texts are compiled
to object modules that is linked to the program, which makes it possible to translate the status code
to the text. For example GDH__FILE can be translated to ”No such file”. The status codes have five
severity levels, success, info, warning, error and fatal, that are associated with the colors green,
green, yellow, red and flashing red. The status codes are used, among other things to indicate status
of server processes and applications i ProviewR. It is also used for return status in c-functions.

If we take a look at the message component $pwre_sroot/msg/rt, it contains msg-files used in the lib
component rt. For the message file rt/src/rt_gdh_msg.msg, the include-file $pwr_inc/rt_gdh_msg.h is
generated. Furthermore the file $pwr_obj/pwr_msg_rt.o is generated, containing the texts for all the
message-files in the rt component. When a program links with this o-file, it is able to translate the
status codes to texts.

Exp
Exp contains various files that doesn't fit in any other component. Under exp/inc include-files are

located that is copied to $pwr_inc, and under exp/com command and script-files are located, that are
copied to $pwr_exe etc.

Mmi
Mmi contains files for the user interface, for example pwg and pwsg files for object graphs and
subgraphs. Some language specific files are also found here, see the translation chapter below.

When a mmi-component is built, object graphs and subgraphs are copied to $pwr_exe.

Jpwr
A jpwr-component contains a number of java files that are compiled and inserted into a java archive.

If we take a closer look at the component $pwre_croot/java/jpwr/rt, all the java-files are located in
rt/src. While java is independent of platform there is no need to place any java-files on the platform
directories below rt/src. When building the component, the java-files are compiled to class-files that
is placed in the java archive $pwr_lib/pwr_rt.jar.

jpwr/rt is a java interface to ProviewR runtime, to communicate over qcom, fetch data from the
realtime database, handle events and alarms etc. To call the c-functions for these modules, java
native is used. The c-code for the native classes is located in java/exe/jpwr_rt_gdh that generates the
so-file $pwr_exe/pwr_rt_gdh.so.

Doc
Below doc there is a number of directories to generate ProviewR documentation. doc/man contains
manuals, where for example English versions are placed in doc/man/en_us and Swedish on
doc/man/sv_se. Common picture files are placed in doc/man/src.

On doc/orm files for Object Reference Manual, are located, mainly picture files as the text reside in
the wbl components. In doc/web are menus and frames for the documentation page.

Tools
Tool components only exists in the rt module, $pwre_croot/src/tools, and contains different tools to
build a ProviewR release. Below tools/exe there are various exe files, for example to convert msg-
files. In tools/bld generic makefiles are located, in tools/pkg build files for installation packages and
in tools/pwre the script to build a ProviewR release, pwre.

Overview
Appendix A contains an overview of the component of the various modules.

Flavor
The level below component is denoted flavor. Normally this is a src-directory containg the source
code for the component, but in some cases the src-directory is divided in directories for different
windowing systems (qt or gtk), or different languages.

Gtk/qt
Originally the the window interface was developed for Motif on OpenVMS, but from V4.3 gtk was
implemented parallel to Motif. The design makes the different interfaces independent of each other,

and it is possible to only build for one of them. It is also fairly easy to implement other windowing
systems. Later a beta version of qt was added while motif was removed.

This division in qt and gtk is found in the exe and lib components.

On the lib-components there is a base class with common code in the src catalog. In the gtk and qt
catalog, resides a subclass with code that is specific for gtk or qt. If we look at
$pwre_croot/xtt/lib/xtt, that contains code for the operator environment, on the src-catalog the files
xtt_op.cpp is located, containing the class XttOp. On the gtk-catalog the file xtt_op_gtk.cpp is
found, containing the class XttOpGtk, a subclass to XttOp, and on in the qt catalog, the file
xtt_op_qt.cpp is found with the class XttOpQt, also a subclass to XttOp.

In the exe component, there is a corresponding division. From the src catalog a generic exe-file is
generated, that starts the gtk or qt version dependent on the option -f. The gtk catalog generates the
exe-file $pwr_exe/rt_xtt_gtk and the qt-catalog $pwr_exe/rt_xtt_qt. If rt_xtt is started with -f gtk,
the gtk-version is started, and with -f qt the qt-version is started. In the gtk directory there is a build
file, link_rule.mk, that contains the link command to build the gtk version. Corresponding catalogs
are found below the qt directory.

Language
The flavor level is also used to divide into different language versions. One example is
$pwre_croot/xtt/mmi/xtt that has the directories src, en_us, sv_se, de_de and fr_fr. The catalogs
contains laguage specific files for texts in menus, windows and object graphs for English, Swedish,
German and French. When building, the files in the catalog xtt/en_us are copied to the catalog
$pwr_exe/en_us, and the files in xtt/sv_se to $pwr_exe/sv_se etc. When the operator environment is
started with a specific language, the translation files are fetched from the corresponding catalog
below $pwr_exe.

Build tree

The build tree is a hierarchy of catalogs created when building a ProviewR release. Here the result
of the building is placed, i.e. the exe-files, archives, graphs etc that is necessary to configure and run
a ProviewR system. Chosen parts of the build tree are collected into installation packages for
development, process, operator and storage stations, but it is also possible to link project directly to
the build tree.

The build tree consists of 5 levels. The environment variable $pwre_broot points to the root of the
build tree, and below this there is one level for operating stytem, and below this further on for
hardware, e.g.

$pwre_broot/os_linux/hw_x86

On the next level there is one directory for each module, where the components of the module are
stored. There is also an exp directory where the module directories are merges together to a common
distribution. Finally there is also a bld directory containing build-files of temporary nature, that are
needed for the building, but not required in the distribution.

Behind the design of separate module directories is the idea that modules can have separate
installation packages and that a ProviewR installation in this way could be more scalable. This is
though not yet implemented in any module.

Module
Every module has its own catalog structure i the build tree, where files that is to be included in the
distribution is stored. For example, the catalogs for the rt module is found under

$pwre_broot/os_linux/hw_x86/rt

Below this catalog the catalogs exe, lib, obj, load, inc, doc, db and cnf are located. A corresponding
catalog structure is also found for the other modules, and for the exp catalog.

Exe
On the exe catalog, exe-files that are created when linking an exe-component, is placed, e.g. rt_ini
that is generated from the exe component $pwre_croot/src/exe/rt_ini.

Other files that are copied to the exe-catalog are shell scrips, object graphs, subgraps etc.

The exe catalog has language dependent subdirectories, e.g. en_us, sv_se and de_de, for English,
Swedish and German. Here resides also helptext files and translation files for different languages.

Lib
On the lib catalog resides archives generated when building a lib component, e.g. libpwr_rt.a that is
generated by the lib component $pwre_croot/src/lib/rt. Also java archives generated by jpwr
components are placed in lib, e.g. pwr_rt.jar.

Obj
On the obj catalog various o-files are found, generated when compiling c and c++ files.

Load
The load catalog contains loadfiles generated by wbl components, for example pwrs.dbs, generated
by the wbl-component $pwre_croot/src/wbl/pwrs, that contains the classvolume pwrs with system
classes. On load you will also find flw-files, copied from wbl-components, that are used by plc-trace.

Inc
The inc catalog contains include files from lib components, and include files that are generated from
wbl components with c-structs and c++ classes for classvolumes, e.g. pwr_abbclasses.h and
pwr_abbclasses.hpp.

Doc
The doc catalog contains the complete documentation for a ProviewR release. Note that all modules
uses the doc catalog below exp, and that the doc catalogs in the modules are not used. Doc contains
language dependent subdirectories, en_us and sv_se, where the language specific files are found. If
we take a look at en_us, we find the documentation homepage, index.html that is copied from
$pwre_croot/src/doc/web/en_us. We also find manuals in pdf and html format generated from
$pwre_croot/src/doc/man/en_us. On the subdirectory orm resides the Object Reference Manual that
mainly is generated from the wbl components for the classvolumes. The catalog doc/prm contains
Programmer's Reference Manual, generated from the lib/rt and lib/co components by doxygen.

Exp
Beside the module directories in the build tree, you find the exp directory, that is a merge of the
different modules, and that constitutes a ProviewR distribution. Exp is for export, and it is this part
of the build tree that is exported in a complete ProviewR release. The exp catalog contains a similar
catalog structure as each module catalog, you will find the subdirectories exp, lib, load, inc etc.
When merging the modules to the exp directories the content of a module is basically copied to the
exp catalog. But there are some cases where a simple copy is not enough. Some lib-components are
represented in several modules, rt and wb, and here the archives are merged to a common archive,
exp/lib/libpwr_rt.a and exp/lib/libpwr_wb.a. Some exe-files contains methods for, for example I/O
handling and popup menues in the operator and development environment, that derives from
different modules, and these have to be linked in a certain way to embrace all the methods. This
goes for the exe-components $pwre_croot/wb/exe/wb, $pwre_croot/xtt/exe/rt_xtt and
$pwre_croot/exe/rt_io_comm.

It is possible to link projects to the release on the exp-catalog, where you can run both the
development, runtime, operator and storage environment. You then define the exp-catalog as a
version under Base in the ProjectList and attach the projects to this version.

Bld
Beside the exp and module catalogs in the build tree, a bld catalog is located. This contains files that
are used at the build, but don't need to included in the release. The subdirectories reflects the
different components and are common for all modules.

Below bld/lib there are catalogs for all lib components, e.g. bld/lib/rt. Here o-files are located,
generated at compilation of c and c++ files, before they are inserted into archives. You vill also find
some .d files which are dependency files for the c-files.

Below bld/exe there are catalogs for all exe components, e.g bld/exe/rt_ini. Here you will find o-
files, that are linked to exe-files, and d-files with include file dependencies.

Below bld/jpwr there are catalogs for jpwr components, e.g. bld/jpwr/rt. Class-files, generated at the
java compilation, are located here, before they are inserted into java archives.

Below bld/msg here are catalogs for msg components. The cmsg-files contains the text for different
status codes. Below bld/wbl resides dependency files for wbl components.

In bld/pkg the installation packages for pwr47, pwrrt, pwrsev and pwrdemo, are placed. These are
built from pkg components below tools/pkg where the build files for installation packages are
located.

Build

Building ProviewR implies to, from the source code tree, generate a build tree and a ProviewR
release the programs, archives, loadfiles, manuals etc. that are needed to install and run
development, process, operator and storage stations.

The build is executed with the pwre command. First you create a build environment, by stating the
root of the source tree and build tree. The environment is stored in a file, in which you can store
several different environments. In this way its easy to attach to an environment, and to shift between
different environments.

Normally you build a complete release, but it is also possible to build only the runtime code, i.e. the
rt module, or the runtime and HMI code, i.e. the modules rt and xtt. In this case though, some
platforms independent files has to be imported from a complete release, by defining an import root.

Pwre is located in the source tree in the catalog $pwre_croot/tools/pwre. On linux, pwre is a perl
script, pwre.pl, located on the subdirectory src/os_linux.

Preparation
For a complete build these packages has to be installed:

libgtk-3-dev
doxygen
gcc
g++
make
libasound2-dev
libdb5.3-dev
libdb5.3++-dev
openjdk-11-jdk
default-libmysqlclient-dev
libsqlite3-dev
libhdf5-openmpi-dev
librabbitmq-dev
libmosquitto-dev
libusb-1.0.0-dev
librsvg2-dev
libgstreamer1.0-dev
libgstreamer-plugins-base1.0-dev
libpython3-dev
python3
libcap-dev

java: Define the environment variable jdk to the current java installation.

export jdk=/usr/lib/jvm/java-11-openjdk-amd64

There has to be a valid display when building ProviewR.

Pwre
Before starting pwre, two env variables has to be defined. One that points to the catalog of the pwre
script, $pwre_bin, and one that states the name of the file where the environments are stored,
$pwre_env_db. You also have to execute a setup script, $pwre_bin/pwre_function. In the example
below, the source code is located in /data0/x6-1-0/pwr and the database is placed on the home
directory.

> export pwre_env_db=~/pwre_env_db
> export pwre_bin=/data0/x6-1-0/pwr/src/tools/pwre/src
> source $pwre_bin/pwre_function

You then create the directory where the build tree is to be placed, in this example /data0/x4-6-1/rls.

> mkdir /data0/x4-6-1/rls

Now we can create the environment named x610

> pwre add x610
Source root [] ? /data0/x6-1-0/pwr/src
Import root [] ?
Build root [] ? /data0/x6-1-0/rls
Build type [dbg] ?
OS [linux] ?
Hardware [x86_64] ?
Description [] ? Version V6.1.0

Note that in 'Source root' the root of the rt-module is stated, not the actual source root which is
/data0/x6-1-0/pwr.

The command 'pwre list' shows stored environments.

> pwre list
-- Defined environments:
x610 Version V6.1.0

With the command 'pwre init' you attach an environment, that is you define a number of env
variables that point to the source tree and the build tree. This has to be done in every session where
you work with the environment.

> pwre init x610

Here are some usable env variables that is defined

$pwre_croot The source root (/data0/x6-1-0/pwr)

$pwre_sroot The source root for the current module

$pwre_broot The build root (/data0/x6-1-0/rls).

$pwr_eexe The common exe directory in the build tree
($pwre_broot/os_linux/hw_x86/exp/exe).

$pwre_elib The common lib directory in the build tree
($pwre_broot/os_linux/hw_x86/exp/lib)

$pwr_exe The exe directory for the current module.

$pwr_lib The lib directory for the current module.

Create directories in the build tree
The next step is to create all the directories of the build tree

> pwre create all

Configure
pwre create_all_modules calls a configure function that examines the environment and
creates a file configuration file $pwre_broot/pwre_'platform'.cnf to adapt the build to
the current installation. If you install additional packages you should run the configure function
again to update the configuration file.

> pwre configure

Complete build
This command build all modules, i.e. perform a complete build of ProviewR.

> pwre build all

By default this command will build for flavor gtk, if you want to build for qt instead, qt is added as
argument

> pwre build all qt

Build a component
When working with development of a part of ProviewR, you often make changes that affects one or
a couple of components. To build an individual component you first have to set up the module.

> pwre module 'module'

You then build the component with the command

> pwre build 'type' 'component' 'flavor'

When the building is performed, the result is stored in the build tree for the current module. This
now has to be merged with the exp directory in the build tree

> pwre merge

Example
If a modification is made in lib/wb/src in the wb module, the command is:

> pwre module wb

> pwre build lib wb src

> pwre merge

Phase
The build is divided in four phases: init, copy, lib and exe.

The basic idea is that the init phase creates directories and archives needed for the build, the copy
phase copies include files and other files, the lib phase compiles c, c++ and java files, and finally the
exe phase links the exe files. This goes for lib and exe components, for other components the phases
are use somewhat different.

The phase can be specified in the pwre command when building a component as the fifth argument,
for example

> pwre build lib wb src copy

where the last copy is the phase. If the phase is left out, all four phases are executed.

Below follows a description of what is executed in the phases for different components.

Type Phase Description

lib init Creates a build directory with the component name in the bld/lib directory in the
build tree.

copy Converts pdr and xdr files to h files, and copies h and hpp files to $pwr_einc.
lib Compiles all c and cpp files that has the component name as prefix. The resultant

object modules are store in the build directory. Creates an archive on $pwr_elib
and inserts the object modules.

exe -
exe init Creates a build directory with the component name in the bld/exe directory in the

build tree.
copy Copies all h and hpp files with the component name as prefix to $pwr_einc.
lib Compiles all c and cpp files. The resultant object modules are store in the build

directory.
exe Links with the link command defined in the link_rule.mk file. Places the

resultant executable on $pwr_eexe.
wbl init -

copy Create includfiles with c structs and c++ classes for all classes in the volume.
These files pwr_'volume'classes.h and pwr_'volume'classes.hpp are placed on
$pwr_einc. Also copies pwg and pwsg files to $pwr_eexe and flw files to
$pwr_eload.

lib Creates a dbs file on $pwr_eload, 'volume'.dbs.
exe Creates documentation for the volume, help-files, html-files, postscript and pdf-

files.
msg init Creates a build directory with the component name in the bld/msg directory in

the build tree.
copy Generates h-files for the status codes on $pwr_einc, and c-files (cmsg) with the

text on the build directory.

lib Compiles the cmsg files.
exe -

exp init -
copy Copies different files, h, hpp, pwg, sh, pwr_com etc.
lib Compiles c and cpp files.
exe -

mmi init -
copy Copies pwg, pwsg and png files to $pwr_eexe. Compiles uil-files to uid-files on

$pwr_eexe.
lib -
exe -

jpwr init Creates a build directory with the component name in the bld/jpwr directory in
the build tree.

copy -
lib Compiles java files to class-files on the build directory. Creates a java archive on

$pwr_elib and inserts classes and gif-files.
exe -

Method dependent exe components
There are three components that has to be built with a special command to bring forward various
types of methods at the build. This concerns wb/exe/wb, xtt/exe/rt_xtt and src/exe/rt_io_comm.
Those are built with the command 'pwre method_build'.

> pwre method_build wb gtk

> pwre method_build rt_xtt gtk

> pwre method_build rt_io_comm

Build installation packages
There are a number of different packages that can be built, and for version 6.1.0 the packages are

pwr61 Development package installed on development stations.
pwrrt Runtime package installed on process, operator and storage stations.
pwrdemo61 Demo project that can be installed on development stations.
pwrrpi61 Development package for development of 32-bit Raspberry Pi nodes on Debian or

Ubuntu. Installed on development stations.
pwrrpi6164 Development package for development of 64-bit Raspberry Pi nodes on Debian or

Ubuntu, Installed on development stations.

The files for package building is found under src/tools/pkg. Under this directory there are directories
for different available platforms and then directories for the different packages. Under this directory

the files are dependent on the packaging system for the platform. The current platforms Debian,
Ubuntu and RaspberrypiOS all uses dpkg.

Let's take a closer look at the pwrrt packages for Debian on x86_64. The source directory is
src/tools/pkg/deb_x86_64/pwrrt. The description file for the package is control. It
contains the version number, dependencies of other packages, and description of the package. When
a new version is set the command to build the package is

> pwre build tools/pkg deb_x86_64 src

The package is created on $pwre_broot/os_linux/hw_x86_64/bld/pkg.

Build new version
The version number is of the format V1.2.3-4, with the meaning

• 1: Universal release. This is really big changes that hardy ever happens any more, so it's
usually incremented when the next lever reaches 10.

• 2: Major release. When new version of the Linux release is required, or when larger
modifications in the classes are made.

• 3: Minor release. Changes of classes and functionality.

• 4: Bugfix release. Bug fixes or minor additions and improvements. No changes in classes.

A new bugfix release only needs a new version number with description in the control file. For
other release the following step is required.

1. Enter a new version and date in src/exp/inc/src/pwr_version.h.

2. Change versions in html-files in src/doc/web/en_us and src/doc/web/sv_se.

3. Change versions in odt-files and dat-files in src/doc/man/en_us and src/doc/man/sv_se.

4. Change version in src/doc/prm/src/Doxyfile.

5. If there is a new year since last version, change copyright year with script, see
src/tools/com/src/README.

6. Set loadfiles date with 'pwre configure – version “29-MAY-2011 16:00:00”'. It is important
to set a common loadfiles date, otherwise there could be problems with cross compiled
nodes, and communications between nodes with releases built on different platforms.

Projects
Projects are not built with the 'pwre build' all command but has to be build manually when required.

Demo project
The demo project is found in project/pwrdemo that only contains the src part of the project tree.
When built the bld part of the project tree is created in
$pwre_broot/os_linux/hw_x86_64/bld/project/pwrdemo/bld.

The build command is

> pwre module project
> pwre build pwrdemo build src

Before a new build, the bld tree has to be cleaned with

> pwre build pwrdemo build src clean

To start the project, the setup script first has to be executed

> cd $pwre_sroot/pwrdemo
> source demo_setup.sh
> export PWR_BUS_ID=999
> rt_ini &
> rt_xtt op

Project pwrtest01
Pwrtest01 is a project with regression tests for the runtime environment.

The project is found in project/pwrtest01 that only contains the src part of the project tree. When
built the bld part of the project tree is created in
$pwre_broot/os_linux/hw_x86_64/bld/project/pwrtest01/bld.

The build command is

> pwre module project
> pwre build pwrtest01 build src

Before a new build, the bld tree has to be cleaned with

> pwre build pwrtest01 build src clean

The project contains several nodes that performs different tests.

pwrtest01a and pwrtest01b Communications tests.
pwrtest01c Runtime tests of plc and different APIs.
pwrtest01d Storage environment with mariadb.
pwrtest01e Storage environment with sqlite, and cloned volumes.
pwrtest01f Remote and IO tests.

To start a node in the project, execute the setup script first, and the start rt_ini with the nodename
qualifier.

> cd $pwre_sroot/pwrtest01
> source test01_setup.sh
> export PWR_BUS_ID=999
> rt_ini -n pwrtest01c &

Project pwrtest02
Pwrtest02 is a project with tests for the development environment.

The project is found in project/pwrtest02 that only contains the src part of the project tree. When
built the bld part of the project tree is created in

$pwre_broot/os_linux/hw_x86_64/bld/project/pwrtest02/bld.

The build command is

> pwre module project
> pwre build pwrtest02 build src

Before a new build, the bld tree has to be cleaned with

> pwre build pwrtest02 build src clean

The project is created by different scripts from scratch, configured and build, and contains test
programs for different APIs.

To start the a node in the project, execute the setup script first, and the start rt_ini.

> cd $pwre_sroot/pwrtest02
> source test02_setup.sh
> export PWR_BUS_ID=999
> rt_ini &

Project pwrtest03
pwrtest03 contains a set of graphs and images for interactive and ocular tests.

The build command is

> pwre module project
> pwre build pwrtest03 build src

Before a new build, the bld tree has to be cleaned with

> pwre build pwrtest03 build src clean

To start the node in the project, execute the setup script first, and the start rt_ini with the nodename
qualifier.

> cd $pwre_sroot/pwrtest03
> source test03_setup.sh
> export PWR_BUS_ID=999
> rt_ini -n pwrtest03a &
> rt_xtt op

To perform the test tests, open the graph and go through the images. For the first images, the upper
row should look equal with the lower.

<image>

For dynamics tests, the right square displays the status of the signals in priority order, and the left
square the result of the dynamics.

<image>

Docker build and test chain
The Docker build and test chain contains docker files and scripts to build ProviewR with packages
and test projects, start containers with test nodes to execute the test programs. The result is a set of

log-files with test results, and the installation packages for the release.

The files reside in src/tools/docker. The build and test sequence is divided in steps, where each step
can be executed individually.

• Step 5 test the demo project. It installs the demo package on the development image and
checks that it's possible to start the demo project.

• Step 1 will create a docker image with the desired Linux release and all required packages
installed.

• Step 2 will create a container from the build image, clone the ProviewR source code from a
git repository, and build all, inclusive demo project, test projects and installation packages.
The result of the build is the installation packages, distribution packages for the test projects,
and a set of log files.

• Step 3 will create a docker image with the ProviewR development package installed.

• Step 4 will create a docker image with the ProviewR runtime package installed.

• Step 6 executes the runtime tests for the node pwrtest01c. The distribution package for
pwrtest01c is installed on the runtime image, and the runtime tests for the node is executed.

• Step 7 executes the tests for pwrtest02. A container is created from the development image,
and the pwrtest02 project is created, configured and started in the development environment.

• Step 8 starts two docker containers with the nodes pwrtest01a and pwrtest01b, and performs
network tests between the nodes.

• Step 9 starts pwrtest01d with sev tests for mariadb.

• Step 10 starts pwrtest01e with sev tests for sqlite and hdf5, and also tests the volume clone
function.

• Step 11 starts pwrtest01f with remote and IO tests.

There are also two steps for interactive and ocular tests

• Step 12 starts pwrtest03a with operator test images.

• Step 13 will start the demo project for interactive test.

To perform the build and tests do the following.

• Copy the src/tools/docker tree to a location outside the source tree.

• If you use a local git repository, make sure the web server is configured to allow http access
to the git repository, and also update the repository for remote access (git update-server-
info).

• If a new version should be built, edit the script file for the desired release, test_all_deb.sh,
test_all_ubu.sh or test_all_rpi.sh and modify gitrepo, release, buildversion, ver and sver.

• Create log, pkg and data directories under the docker directory.

• Execute the script file with start end step, eg ./test_all_deb.sh 1 11.

Step Description Result
1 Create build image. Docker image, eg

pwrbuild_deb.
2 Build ProviewR. Installation packages in pkg/ and project distrubutions packages in

data/, eg

pkg/pwr60_6.0.0-1_amd64.deb
pkg/pwrrpi60_6.0.0-1_amd64.deb
pkg/pwrdemo60_6.0.0-1_amd64.deb
pkg/pwrrt_6.0.0-1_amd64.deb
data/pwrp_pkg_pwrtest01a_0001.tgz
data/pwrp_pkg_pwrtest01e_0001.tgz
data/pwrp_pkg_pwrtest01b_0001.tgz
data/pwrp_pkg_pwrtest01f_0001.tgz
data/pwrp_pkg_pwrtest01c_0001.tgz
data/pwrp_pkg_pwrtest03a_0001.tgz
data/pwrp_pkg_pwrtest01d_0001.tgz
data/pwrtest02.tar.gz
log/build.tlog

3 Create pwrdev image Docker image with the pwr development package installed, eg
pwrdev_deb

4 Create pwrrt image Docker image with the pwrrt package installed, eg
pwrrt_deb

5 Demo project test Log file
log/pwrdemo_status.tlog

6 Runtime test Log files
log/time.tlog
log/plc.tlog
log/nettime.tlog
log/gdh.tlog
log/errh.tlog
log/cdh.tlog
log/aproc.tlog
log/mh.tlog
log/mhappl.tlog
log/qcom.tlog
log/pwrrt.tlog
log/mqtt_server.tlog
log/xttscript.tlog
log/ccm.tlog

7 Com test log/qmon.tlog
log/qmonc.tlog

8 Development test log/pwrtest02_classvolume.tlog
log/pwrtest02_rootvolume.tlog
log/ldh.tlog
log/pwrwb.tlog

9 Sev mariadb test log/sev_mariadb.tlog
10 Sev sqlite and hdf5 test log/sev_sqlite.tlog

log/sev_hdft.tlog
11 Remtote and IO test log/remote.tlog

log/io.tlog

The log files can be displayed by a browser, test_xtt_gtk, with the option -f to specify the log files.
Any error log is indicated with red.

> test_xtt -f log/*.tlog

Build with an import root
From V4.7.0.

When building a common release on different platforms, the version of the loadfiles should be the
same on all the platforms. This can be achieved by defining an import root. The idea is to build the
dbs-files on one platform, and define import roots on the other, and the copy the dbs-files from the
import root, instead of building them.

When creating the environment with 'pwre add' the import root is stated. In the exemple below it
resides on a remote node, pwrdeb.

> pwre show
--
-- Environment : x470_64
-- Module.........: rt
-- Source root....: /data0/x4-7-0/pwr/src
-- Import root....: pwr@pwrdeb:/data0/x4-7-0/rls/os_linux/hw_x86
-- Build root.....: /data0/x4-7-0_rt/rls

-- Build type.....: dbg
-- OS.............: linux
-- Hardware.......: x86
-- Description....: X4.7.0 on 64 bit debian

Create the build tree directories

> pwre create_all_modules

Import the dbs files from the import root

> pwre import dbs

Build all the modules

> pwre build_all_modules

Build for embedded platforms
When building for embedded systems with a cross compiler, it's not possible to build a complete
release with the development environment. Instead some files generated from the development
environment is imported from a complete release. In pwre the path to this import release is stated,
and with the 'pwre import' command files are imported.

A cross compiler has to be defined with the environment variables pwre_cc, pwre_cxx and pwre_ar
that should point at the c, c++ compiler and the archive program ar.

For the build, some programs has to be executed and pwre_host_exe should point to the exe
directory of an release of the development platform, usually the same release as the import root.

We begin with defining the pwre links to the compiler tools . In the example we are building for
Raspberry Pi.
export pwre_cc=arm-linux-gnueabihf-gcc
export pwre_cxx=arm-linux-gnueabihf-g++
export pwre_ar=arm-linux-gnueabihf-ar

Define a link to the exe directory of the host release

export pwre_host_exe=/data1/x5-0-0/rls/os_linux/hw_x86/exp/exe

Create an pwre environment for the rpi release with hardware arm

pwre add x500rpi
Source root? /data0/x5-0-0/pwr/src
Import root? /data0/x5-0-0/rls/os_linux/hw_x86
Build root? /data0/x5-0-0/rls
Build type?
OS? linux
Hardware? arm

Build the arm release

pwre init x500rpi
mkdir $pwre_broot
pwre configure --ebuild
pwre create_all_modules
pwre import rt

pwre import java
pwre ebuild rt

In the above example the embedded release root is common with the host release and probably
already defined int the project list. If another root is used it should be given a version name in the
project list, $pwra_db/pwr_projectlist.dat, eg

%base X5.0.0rpi /data0/x5-0-0/rls

As default this will build the runtime part of all modules. It is possible to disable the build of not
needed modules by editing the ebuild.dat file on $pwre_bin.

bcomp 1
java 1
remote 1
nmps 1
sev 1
opc 1
profibus 1
otherio 1
ssabox 1
tlog 1
othermanu 1
abb 1
siemens 1
klocknermoeller 1
inor 1
telemecanique 1

If 1 is exchanged to 0 for a module, this module will not be built. Note there can be a dependency
between modules. The seimens and abb modules are, for example, dependent on the profibus
module.

Configure an embedded project
Normally there is also a need to build a project on the runtime only release. The project has to point
at the complete release, because that's where the development environment is present, but the build
command for the node and plcprogram has to be directed to the runtime only release. To do this you
set the operating system for the node, and for the root volume to CustomBuild, and create a
CustomBuild object below the NodeConfig object for the node in the directory volume. In the
CustomBuild object the cross compiler tools are stated.

Fig CustomBuild object defining the embedded environment

Build operator environment only
From V4.7.0

Building an release with only the operator environment is made in a similar way. As this includes
the runtime environment, runtime is build first as described in the previous section. Then the
operator is build with

> pwre import op
> pwre ebuild op

Appendix A

Component overview

Module rt
Component Description

lib co Contains common functions for runtime and development environment, e.g.
time functions, command line interpreter, handling of different languages,
xml parser.

rt This is the basic runtime library with functions for the runtime environment,
e.g. the realtime database, handling of alarms and events, plc, io handling,
subscriptions etc.

dtt Contains the system pictures in rt_rtt.
msg_dummy ?

msg co Msg-files for lib/co.
rt Msg-files for lib/rt och exe/rt_*.
flow Msg-files for xtt/lib/flow.
glow Msg-files for xtt/lib/glow.
ge Msg-files for xtt/lib/ge.
rs Msg-files for the modules remote, nmps, ssabox och tlog.
wb Msg-files for wb/lib/wb.

wbl pwrs Classvolume pwrs, system classes.
pwrb Classvolume pwrb, base classes.
rt Shared volume rt. Contains sound objects.
wb WorkBenchVolume. Contains list descriptors.

mmi co Common picture files.
exp com Shell scripts and command files.

inc Include-files for basic types, classes and definitions.
rt Various files.
stdsoap2 Files for gsoap, used by the status server.

exe co_convert Program to generate h-files and convert between different formats.
Generates h and hpp files for class volumes from wb_load files, converts
from xtt-help files to pdf, postscript and html etc.

co_merge Used by pwre when handling modules.

pwr_user Command interface to the user database.
rt_bck Backup of objects in the realtime database.
rt_bck_dump Create a dump from the backup file.
rt_elog The event log server. Stores event and alarms in a database.
rt_emon Event monitor. Handles alarms and events.
rt_fast Handles fast curves.
rt_ini The startup program for the runtime environment. Creates the realtime

database and starts the system processes, plcprogram and applications. Also
handles the consol logging.

rt_io_comm Process for I/O handling of units that are not handled by the plc program.
rt_linksup Supervision of links to other ProviewR nodes.
rt_mozilla Program that starts a web browser.
rt_neth Nethandler. Provides other nodes with information about the realtime

database.
rt_neth_acp Handles links with other ProviewR nodes.
rt_prio Sets priority on system and application processes.
rt_qmon Qcom monitor. Handles communication with other nodes.
rt_rtt Tool to examine the system and the realtime database from a terminal

window.
rt_sevhistmon Collects history data and sends to storage stations.
rt_statussrv Provides information about system status for the Supervision Central.
rt_sysmon System monitor. Supervises the system.
rt_tmon Timer monitor. Sends subscriptions to operator stations.
rt_trend Handles trend curves.
wb_rtt An editor for rt_rtt pictures.

doc man Contains manuals and help texts.
web Web-files for the documentation home page.
orm Files for the Object Reference Manual.
prm Programmer's Reference Manual.
dox Doxygen definitions.

tools pwre Build script to build ProviewR from sources.
bld Makefiles to build ProviewR.
pkg Files to build installation packages.
exe Various programs to create msg-files etc.

Module Xtt
Component Description

lib cow Common graphical functions and window for messages, runtime monitor,
status monitor and helptext viewer.

flow Flowchart editor (flow) used by the plc editor and plc trace. Also a browser
used for example in the navigator.

glow Graphical package for process graphics and the Ge editor.
ge The Ge editor, process graphics.
xtt Functions in the operator environment, navigator, alarm windows, trends, fast

curves and history curves, operator window etc.
exe rt_xtt The ProviewR operator environment.

wb_ge Separate program for the ge editor.
pwr_rtmon Runtime monitor. Program to start/stop ProviewR runtime.
rt_statusmon Supervision central. Program to supervise ProviewR nodes.
co_help Separate program to view help texts.

mmi ge Picture files for the Ge editor.
xtt Picture files for xtt.
sis Subgraphs for SIS.
ssg Subgraphs for SSG.

exp ge Object graphs and type graphs.
inc Include files for bitmaps used as icons in navigator and palettes.

Module Wb
Component Description

lib wb The main library for the development environment. Contains the development
database, the configurator, the plc editor, the spreadsheet editor etc.

exe wb The main development tool of ProviewR.
wb_cmd Command line and script interface to the development database.
wb_ldlist Program to examine the version of a dbs-file.
wb_upgrade Program sometime used by the project upgrade procedure.

mmi wb Picture files for the development environment.
exp wb Various files.

com Command files and shell scripts.

Module Remote
Component Description

lib remote Common functions for remote.
exe rs_remotehandler Main program for the remote function.

rs_remote_3964r Communication to a remote system using Siemens 3964r on a serial
line.

rs_remote_alcm Communication to a remote system using the ALCM protocol.
rs_remote_modbus Communication to a remote system using Modbus on a serial line.
rs_remote_mq Communication trough a message queue using BEA MessageQ.
rs_remote_rk512 Communication to a remote system using rk512.
rs_remote_serial Communication to a remote system using a serial line.
rs_remote_tcpip Communication to a remote system using the TCP/ip protocol.
rs_remote_udp Communication to a remote system using the UDP/ip protocol.
rs_remote_logg Program to log communication on file.
remote_pvd_pwrcli Provider program to mount a ProviewR system as an extern volume.
remote_pvd_pwrsrv Server program for remote_pvd_pwrcli.

wbl remote The Remote classvolume.

Module Nmps
Component Description

lib nmps Contains code for function objects and application interface for
Nmps.

exe rs_nmps_bck Backup of cells and data objects.
rs_nmps_bck_dump Program to examine a backup file.

wbl nmps The NMps classvolume.

Module Profibus
Component Description

lib rt Contains I/O methods for profibus and profinet.
cow Contains the profibus configurator and the profinet configurator.
xtt Xtt-method to open the profibus configurator in rt_xtt.
wb Wb-methods to open the profibus configurator and profinet configurator.

exe profinet_viewer Program to show connected devices on the profinet circuit, and to set
name and adress on the devices.

pn_get_deviceid Program to extract ProductFamily and TextInfo from gsdml files and
generate a database for the profinet configurator.

wbl mcomp The Profibus classvolume.
mmi mcomp Object graphs.
exp gsd Contains gsd-filer, e.i. descriptions files for profibus slaves.

rt Contains help texts.

Module Opc
Component Description

lib opc Common functions and the gsoap interface.

exe opc_provider Opc client, implemented as an external volume.
opc_server Opc server.

wbl mcomp The Opc classvolume.
exp mcomp Object graphs and type graphs.

Module Java
Component Description

jpwr rt Java runtime interface.
rt_client Archive to execute java remote and get info from the realtime database via

socket communication.
jop Operator interface in java.
jopc Object graphs in java.
beans Components to build java graphics in for example JBuilder or other IDE
bcomp Object graphs for Basecomponent objects.
abb Object graphs for ABB objects.

exe jpwr_rt_gdh Java native for gdh, qcom, errh and mh classes.

Module Otherio
Component Description

lib rt I/O methods for various I/O units.
usbio_dummy Archive to be able to link the plc without installing MotionControl USBIO.

wbl mcomp The OtherIO classvolume.
mmi mcomp Object graphs.
exp rt Include-files for external archives.

Module Bcomp
Component Description

lib rt Code for plc function objects.
wb Wb methods for various classes.

wbl bcomp The classvolume BaseComponent.
mmi bcomp Object graphs and graphical symbols.
doc orm Pictures to Object Reference Manual.

Module Othermanu
Component Description

wbl mcomp The classvolume OtherManufacturer.
mmi mcomp Object graphs and graphical symbols.

doc dsh Datasheet for various components.

Modules ABB, Siemens, Inor etc
These modules for various manufacturers are designed in a similar way.

Component Description

wbl mcomp The classvolume for the module.
lib rt Possible I/O methods.

wb Possible wb methods.
mmi mcomp Object graphs and graphical symbols.
doc dsh Datasheets for various components.

orm Pictures to Object Reference Manual.

	About this manual
	Introduction
	Source code
	Fetch the source code
	Tarball
	Git repository

	Source code tree
	Modules
	Kernel modules
	Other modules
	abb, siemens, ssabox, inor, klocknermoeller, telemecanique

	Types
	Components
	Exe
	Lib
	Wbl
	Msg
	Exp
	Mmi
	Jpwr
	Doc
	Tools
	Overview

	Flavor
	Gtk/qt
	Language

	Build tree
	Module
	Exe
	Lib
	Obj
	Load
	Inc
	Doc

	Exp
	Bld

	Build
	Preparation
	Pwre
	Create directories in the build tree
	Configure
	Complete build
	Build a component
	Phase

	Method dependent exe components
	Build installation packages
	Build new version
	Projects
	Demo project
	Project pwrtest01
	Project pwrtest02
	Project pwrtest03

	Docker build and test chain
	Build with an import root
	Build for embedded platforms
	Configure an embedded project

	Build operator environment only

	Appendix A
	Component overview
	Module rt
	Module Xtt
	Module Wb
	Module Remote
	Module Nmps
	Module Profibus
	Module Opc
	Module Java
	Module Otherio
	Module Bcomp
	Module Othermanu
	Modules ABB, Siemens, Inor etc

