
 Guide to Storage Environment

Version 6.1.5	

1

Copyright (C) 2005-2025 SSAB EMEA AB

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts.

2 Introduction

A task of increasing importance for the automation systems is to store process data. The
possibility to store large amounts of data has given rise to new functionality in terms
of development and optimization of processes, predictive maintenance, calculation of
models for simulation etc.

This document describes storage of process history in ProviewR and how this is configured.

Introduction 3

3 Process data

Storing of process history data means that signals and other data is stored cyclically
in a database, and from there can be fetched to displayed in curves or analyzed in
other contexts, eg for predictive maintenance or process development.

The storage is configured with the object SevHist and SevHistObject. SevHist configures
storage of one attribute, and SevHistObject of a whole object. In the SevHist object
you state how often the value should be stored, and for how long.

The storage is handled by two processes, a client process, rt_sevhistmon, that collects
data and sends it to a server process, sev_server, that stores the data in the database.
The client process can send data to several different server processes, and the server
process can receive data from several different client processes, The client and server
process can run in the same node, or in different nodes. For test and troubleshooting
you can start a server process on a process station that stores data from its own node.
For larger amounts of data with storage over several years, you appropriately create
a dedicated storage station, that stores data from several nodes.

3.1 Client

rt_sevhistmon is the client process that collects the process values in one node and
sends it to the server. It's configured with a SevHistMonitor object in the node
hierarchy. Below the SevHistMonitor object you place a SevHistThread object, that
contains cycle time and server node. Each SevHist and SevHistObject object is connected
to a thread object and thus will stored on the node, and with the cycle time specified in
the thread object.

The thread object also contains a ServerThread attribute, by which the storage can be
directed to a specific thread in the server process. This can be used to spread the load
over different threads in the server process.

3.2 Server

The server process, sev_server, receives data from the client processes an stores it
in the database. If the database doesn't exist, it will be created with the required
tables. Then a handshake with the client processes is performed, where client processes
sends information about all the attributes and objects that should be stored. The cyclic
transfer of process data from the client process to the server process then starts.

The server process also can answer requests of history date for an attribute in a
specific time interval.

Data can be stored in different types of databases, MariaDB (MySQl), Sqlite and HDF5.

MariaDB/MySQL

MariaDB is a clone of MySql that was created when MySQL was taken over by Oracle. They

Process data 4

should be compatible and exchangeable with each other. In recent Linux releases often
MariaDB is installed. Many configuration alternatives in ProviewR is still named MySQL
but should also be used for MariaDB.

MariaDB should be used for larger databases and for databases for permanent storage.

Sqlite

Sqlite is a small, fast database that doesn't require installation of a server. It can
be used for smaller databases for test and troubleshooting.

HDF5

HDF5 is a file format to store large amounts of data. The absence of journaling doesn't
make it suitable for permanent storage.

Alarms and events

Storage of alarms and events can be achieved with the SevHistEvent object. The object
contains an EventSelectList where hierarchies for alarms that should be stored are
specified.

Process data 5

4 Configuration

The storage process history for a single attribute is configured with a SevHist object,
and storage for a whole object with a SevHistObject object. Furthermore the client process
is configured with SevHistMonitor and SevHistThread objects, and the server process with a
SevServer object.

4.1 SevHist

Attributes that should be stored in the history database is configured with the
SevHist object. The attribute to store is specified in Attribute in the SevHist object.
The SevHist object is normally positioned below the object that is stored. If the
object contains an ActualValue attribute. this will automatically be inserted into
the SevHist object.

Fig Configuration with SevHist, SevHistMonitor och SevHistThread objekt

4.2 SevHistObject

SevHistObject stores all the attributes in an object into a single table.

Configuration 6

It is recommended to create a specific class for this purpose, as existing classes often
contains attributes that shouldn't be stored.

4.3 Server threads

By configuring threading of the server process, the performance can be substantially
increased as the load is spread on several different threads.

Threading is implemented for MariaDB/MySSQL.

The threads are configured in the client by stating a thread number in SevHistThread
object. A thread can be numbered with an arbitrary positive number, and all
SevHistThread objects with the same thread number will be handled by the same server
thread.

In the object graph of the SevServer object, the load of each thread is displayed, and
by altering the thread number in the SevHistThread objects, one can make sure that
no server thread is overloaded.

Server threads also have to be configured in the server process by setting the attribute
UseServerThreads in the SevServer object to 1.

Fig Configuration of thread number in the SevHistThread object.

Configuration 7

Fig Object graph for SevServer object displaying the server threads.

4.4 Deadband

Deadband can be configured on analog, digital and integer signals, and means the a certain
change of the value is required before a new value is stored into the database. By
setting a deadband the disk space used to store a signal can be substantially reduced.

The deadband is configured by setting Deadband and ReadOptimized in Options in the SevHist
object, and state the size of the deadband in the Deadband attribute.

Configuration 8

Fig Deadband configuration.

For deadband on digital signals, set Deadband to 0.5.

Configuration 9

Fig Deadband configuration for a digital signal

4.5 Deadband with linear regression

This is a two dimensional deadband that also works on ramps.
With linear regression a straight line is calculated from the latest store value, and
as long as no value deviates more than the deadband from the line, no new value is stored.
This will even more reduce the required disk space.

Fig Deadband with linear regression

Configuration 10

Deadband with linear regression is configured by setting Deadband, DeadbandLinearRegr
and ReadOptimized in Options in the SevHist object, and supplying the size of the
deadband in Deadband.

Fig Configuration of deadband with linear regression

4.6 Event triggered storage

By setting Event in Options in the SevHist object, it is possible to control when the
storage is performed. When Trigger in the SevHist object is set to 1, the current value
is sent to the server process. Trigger is reset when the value is sent.

Configuration 11

Fig Configuration of event triggered storage

4.7 Meanvalue calculation of stored signals

The server process can perform a meanvalue calculation of a stored signal, and this is
configured by activating MeanValue1 or MeanValue2 in Options in the SevHist object.

The server can make a calculation with two different times, and these are set in
MeanValueInterval1 and MeanValueInterval2 in the SevServer object. In SevHist.Options you
select which of these times the calculation should be executed with.

The meanvalue is stored in the item tree, and from there is can be referred from Ge graphs
and applications with the suffix '.__MeanValue', eg
'pwrNode-sev-H1-Av1.ActualValue.__MeanValue'.

4.8 Item tree

Each stored signal is represented of an item. All items are displayed in an item tree
that is placed under pwrNode-sev in the realtime database. In the items tree, the signals
are ordered in their original hierarchy, and the last received value is displayed. More
information about the items is displayed by clicking with Shift+Click on the value, or
with Shift+Arrow left on the keyboard.

Configuration 12

Fig An item in the item tree

4.9 Mounting of the item tree

The item tree is built of objects of type $Block and $BlockAttribute to recreate the
original hierarchy and object structure to some extent. By mounting the hierarchies under
pwrNode-sev on the top level you can also recreate the original object and attribute
names and use them for references in graphs and applications.

The mount is made with mount objects of type $MountDynObjects as the objects in the item
tree are dynamic objects.

When the mount is done, signals can be referenced with their original names. This makes
it easier to refer to the signals in graphs and applications.

Configuration 13

Fig Mount of hierarchy in the item tree

4.10 Refer to data in the item tree

Data in the item tree can be referred to with the suffix '.__'dataname''. For example the
mean value for H1-Av1 is referred to by

pwrNode-sev-H1-Av1.ActualValue.__MeanValue

If there is a mount of H1, pwrNode-sev is superfluous and the reference can be made with

H1-Av1.ActualValue.__MeanValue

It's possible to fetch the value and subscribe to it from c++ and Python code. In Ge
graphs the value type should be added

H1-Av1.ActualValue.__MeanValue##Float32

Here are some examples of other values that can be referenced

H1-Av1.ActualValue Last received value.
H1-Av1.ActualValue.__TableName Name to table where the value is stored.
H1-Av1.ActualValue.__StandardDeviation Standard deviation for the mean value.
H1-Av1.ActualValue.__LastTime Time for last received value.

4.11 Plc programming

Item data can also be fetched in the plc program. As the data reside in dynamic objects
the GetExt objects has to be used, eg GetExtFloat32, GetExtBoolean etc.

In the example below, the momentary value for H1-Av1.ActualValue and the mean value
for H1-Av2.ActualValue are added and put into H3-Av3 that is a local object in the server
node.

Configuration 14

Fig Plc code with item data

4.12 Sev export

Sev export makes it possible to export data to the sev server that doesn't need to
be stored in the history database, but nevertheless should be available to be displayed
in graphs and reports.

The export is configured with SevExport objects. A SevExport object exports one attribute.
As for the SevHists objects, it is the rt_sevhistmon process that collects the attributes
and sends them to the server node. In this case the receiver process is sev_import, that
is configured with a SevImportServer object in the sev server node. sev_import inserts
the value into the item tree from where it can be displayed in graphs or used in the
plc program.

Fig Configuration of export with SevExport

Configuration 15

Mean value calculation

Also for exported attributes, a mean value calculations can be configured by setting
MeanValue1 or MeanValue2 in Options in the SevExport object.

The server makes the mean value calculation with two different times that are stated in
the SevImportServer object, attributes MeanValueInterval1 and MeanValueInterval2.
In SevExport.Options is stated which on of these times the mean value calculation should
be made with.

The mean vaue is displayed in the item tree, and can be referred to from Ge graphs and
applicaions with the suffix '.__MeanValue', eg
'pwrNode-sev-H2-Av2.ActualValue.__MeanValue'.

Event triggered export

By setting Event in Options in the SevHist object, it is possible to control when the
storage is performed. When Trigger in the SevHist object is set to 1, the current value
is sent to the server process. Trigger is reset automatically when the value is sent.

Configuration 16

5 Internal database structure.

MariaDB/MySQL and sqlite are SQL databases where data is stored in tables. In HDF5 an
hierarchy of groups are created where data is stored in datasets. The notation
with tables below applies to SQL but the structure of the datasets in HDF5 is similar.

The database is named 'pwrp__'systemname'' and contains the tables 'items', 'objectitems',
'objectitemattributes', 'sev_stat' and 'sev_version'. Furthermore there is one table for
each atttribute or object that is stored.

items

The items table contains information from all SevHist and SevHistEvents that it stored.

Name Type Description
id integer Identity.
tablename varchar Name of table with history data.
vid integer Volume identity of stored object.
oix integer Object index of stored object.
oname string Object name.
aname string Attribute name. If it's a SevHistEvent item, 'Events'.
uptime datetime Start time
cretime datetime Creation time for item.
storagetime integer Storage time in seconds. After this time the data will be
 deleted.
deadband float Deadband.
options integer Options.
scantime float Scan time.
description string Description of stored object.
vtype integer Attribute type.
vsize integer Attribute size in bytes.
unit string Attribute unit.

objectitems

The Objectitem table contains information about all SevHistObject that is stored.

Name Type Description
id integer Identity.
tablename varchar Name of table with history data.
vid integer Volume identity for stored object.
oix integer Object index for stored object.
oname string Object name.
aname string Not used.
uptime datetime Start time.
cretime datetime Creation time for item.
storagetime integer Storage time in seconds. After this tim the data will be
 deleted.
deadband float Deadband.
options integer Options.
scantime float Scan time.
description string Description of stored object.

Internal database structure. 17

objectitemattributes

To get a complete description of a SevHistObject, information of the attributes each
object contains is needed in addition to the content of objectitems. This is stored
in the objectitemattributes table with one row for each attribute.

Name Type Description
tablename varchar Name of table with history data
attributename string Attribute name.
attributeidx integer Attribute index.
attributetype integer Attribute type.
attributesize integer Attribute size in bytes.

History tables for individual attributes

Tables for storage of process values configured with SevHist objects.

Name Type Description
id integer Identity.
time datetime or integer Time.
ntime integer Nano seconds if high time resolution is configured.
value arbitrary type Process value.

History tables for whole objects

Tables for storage of process values for whole objects configured with SevHistObject
objects.

Name Type Description
sev__id integer Identity.
sev__time datetime or integer Time.
sev__ntime integer Nano seconds if high time resolution is configured.
'attributename1' arbitrary type Process value for first attribute in the object.
'attributename2' arbitrary type Process value for second attribute in the object.
...

History tables for alarm and events

Tables for storage of events configured with a SevHistEvent object.

Name Type Description
time integer Time.
ntime integer Nano seconds.
eventtype integer Event type.
eventprio integer Event priority.
eventid_nix integer Event identity, nix part.
eventid_birthtime integer Event identity, birthtime part.
eventid_idx integer Event identity, idx part.
supobject_vid integer Supervision object attrref, vid part.
supobject_oix integer Supervision object attrref, oix part.
supobject_offset integer Supervision object attrref, offset part.
supobject_size integer Supervision object attrref, size part.
eventtext varchar Event text.
eventname varchar Event name.
eventstatus integer Event status.

sev_stat

Internal database structure. 18

sev_stat contains statistics. Nowadays this information is also available in the
SevServer object.

Name Type Description
current_load float Current storage load in percentage.
medium_load float Medium storage load in percentage.
storage_rate float Number of stored items per second.
medium_storage_rate float Medium value of number of stored items.
datastorage_msg_cnt integer Number of storage transactions since startup.
dataget_msg_cnt integer Number of history data requests since startup.
items_msg_cnt integer Number of item messages.
eventstore_msg_cnt integer Number of storage messages for alarms and events.

sev_version

Contains the current version of the sev databse. the Sev version is incremented when
the database structure is modified and does not follow the version of ProviewR
releases.

Name Type Description
version integer Current version.

Internal database structure. 19

6 Databases

The most used database is MariaDb, but there is also support for Sqlite and HDF5 with
limited functionality.

6.1 MariaDB/MySQL

MariaDB is the most used storage database in ProviewR. It also has full functionality
for deadband and server threads.

The configuration is made by setting Database to MySQL in the SevServer object.
Furthermore installation and start of mariadb-server is required on the server node.
The pwrp user also has to be created

For MariaDB

mysql
MariaDB> create user pwrp@localhost;
MariaDB> grant all privileges on *.* to pwrp@localhost;

For MySQL

mysql
mysql> grant all privileges on *.* to pwrp@localhost;

The recommended database engine is InnoDB that is default in later versions.

For small databases the standard configuration of MariaDB can be used, but for dedicated
server nodes there are som settings that should be made in the file /etc/mysql/my.cnf.

innodb_file_per_table
From maintenance view it is an advantage to have each table in a separate file. Then
disk space can be retrieved for deleted signals.

innodb_log_file_size
Transactions are first written into log files before they are inserted into the data
files. With larger log files the writing to the database files can be optimized and done
sequentially. On the other hand a recovery of the database will take longer time. The
size of the log files normally should be increased from the default value.

innodb_buffer_pool_size
Memory that is not used by the operating system, applications or MariaDB should be
allocated to the buffer pool. A calculation of the buffer pool size can look like this.
Let's say we have 16 Gb memory, 2 Gb is used by the operating system, the
innodb_log_file_size is 0.5 Gb and there should be space in the cache for this, ProviewR
needs 0.5 Gb, leave 1 Gb to other and the remaining 12 Gb can be configured for the
innodb_buffer_pool_size.

query_cache_type och query_cache_size
Tables are continuously modified so there is no reason to cache the result of requests.
Set these to 0.

Databases 20

Example of configuration

[mysqld]
innodb_log_file_size = 512M
innodb_buffer_pool_size = 12G
innodb_file_per_table = 1
innodb_flush_method = O_DIRECT
query_cache_type = 0
query_cacne_size = 0

Maintenance and troubleshooting

With the MariaDB client 'mysql', the database can be inspected and modified. The name of
the database is 'pwrp__'systemname'', eg 'pwrp__test57'. Below is an example of how to
look at the items table and data for an individual item.

> mysql
MariaDB> use pwrp__test57;

MariaDB> select oname,tablename from items;
+-----------------------------+-------------------------------+
| oname | tablename |
+-----------------------------+-------------------------------+
VolTest57:H5-Av1	O000_100_100_001_000000ab__1
VolTest57:H5-Dv1	O000_100_100_001_000000b7__2
VolTest57:H5-Dv2	O000_100_100_001_000000be__3
VolTest57:H1-Av1	O000_100_100_001_00000018__4
VolTest57:H1-Av2	O000_100_100_001_0000002e__5
VolTest57:H1-Av3ÅÄÖ	O000_100_100_001_0000009f__6
VolTest57:H1-Dv1	O000_100_100_001_00000056__7
VolTest57:H1-Iv1	O000_100_100_001_0000005d__8
VolTest57:H1-Iv2	O000_100_100_001_0000005e__9
VolTest57:H1-Av4	O000_100_100_001_0000013d__10
VolTest57:H18-SevHistEvents	O000_100_100_001_00000ef3__11
VolTest57:H1-Av5	O000_100_100_001_00000f96__12
+-----------------------------+-------------------------------+

MariaDB> select time,value from O000_100_100_001_00000018__4 order by id desc limit 10;
+---------------------+----------+
| time | value |
+---------------------+----------+
2021-07-14 14:21:32	83.7721
2021-07-14 14:21:26	97.9997
2021-07-14 14:21:22	99.8689
2021-07-14 14:21:18	95.4521
2021-07-14 14:21:13	81.552
2021-07-14 14:21:07	54.4918
2021-07-14 14:20:50	-47.3081
2021-07-14 14:20:42	-83.9247
2021-07-14 14:20:36	-98.0545
2021-07-14 14:20:32	-99.8544

Databases 21

2021-07-14 14:20:28	-95.3687
2021-07-14 14:20:23	-81.3886
2021-07-14 14:20:17	-54.2567
2021-07-14 14:20:02	36.1479
2021-07-14 14:19:53	80.5102
2021-07-14 14:19:47	96.7008
2021-07-14 14:19:43	99.9982
2021-07-14 14:19:42	99.8383
2021-07-14 14:19:38	95.2808
2021-07-14 14:19:33	81.2193
+---------------------+----------+

6.2 Sqlite

Sqlite doesn't require installation of any further server process, however the
functionality is limited. Support for server threads and deadband with linear
regression is missing.

Sqlite is configured by setting Database in the SevServer object to Sqlite.

The database file is created in $pwrp_db with the name pwrp__'systemname'.dbsqlite, eg
pwrp__test57.sqlite.

Maintenance and troubleshooting
The database can be examined with 'sqlite3'.

> sqlite3 $pwrp_db/pwrp___test57.dbsqlite
sqlite> select oname,tablename from items;
VolTest57:H1-Av1|O000_001_001_002_0000004a__0
VolTest57:H1-Av2|O000_001_001_002_0000004c__2
VolTest57:H1-Av3|O000_001_001_002_0000004e__3
VolTest57:H1-Av4|O000_001_001_002_00000050__4
VolTest57:H1-Dv1|O000_001_001_002_00000052__5
VolTest57:H1-Iv1|O000_001_001_002_00000054__6
VolTest57:H1-Iv2|O000_001_001_002_00000056__7

sqlite> select time,value from O000_001_001_002_0000004a__0 order by id desc limit 20;
2021-07-09 16:25:10|-26.695
2021-07-09 16:25:09|-20.593
2021-07-09 16:25:08|-14.409
2021-07-09 16:25:07|-8.16822
2021-07-09 16:25:06|-1.89594
2021-07-09 16:25:05|4.38459
2021-07-09 16:25:04|10.6471
2021-07-09 16:25:03|16.8675
2021-07-09 16:25:02|23.0222
2021-07-09 16:25:01|29.0861
2021-07-09 16:25:00|35.0345
2021-07-09 16:24:59|40.8447
2021-07-09 16:24:58|46.4945
2021-07-09 16:24:57|51.9609
2021-07-09 16:24:56|57.2216
2021-07-09 16:24:55|62.2567

Databases 22

2021-07-09 16:24:54|67.0468
2021-07-09 16:24:53|71.5718
2021-07-09 16:24:52|75.815
2021-07-09 16:24:51|79.7587
sqlite> .quit

6.3 HDF5

HDF5 doesn't require installation of any further server process, however the
functionality is limited. Support for server threads and deadband with linear
regression is missing.

HDF5 is configured by setting Database in the SevServer object to HDF5.

The database file is created on $pwrp_db with the name 'pwrp__'systemname'', eg
pwrp__test57.hdf5.

The file contains the groups 'Dir' and 'Tables', where 'Dir' contains the datasets 'Cmn',
'Items', 'ObjectItems', 'ObjectItemAttributes' and 'Stat'. Under 'Tables' there is one
dataset for each stored attribute or object, eg 'O000_001_001_003_0000004a__0',
'O000_001_001_003_0000004c__1' etc.

Maintenance and troubleshooting
It is possible to inspect the data file with Python by installing python3-h5py.

> python3
>>> import h5py
>>> f = h5py.File('/usr/pwrp/test57/src/db/pwrp__test57.h5','r')
>>> list(f.keys())
['Dir', 'Tables']
>>> list(f['Dir']['Items'])
[(0, b'O000_001_001_003_0000004a__0', 65795, 74, b'VolHdf5:H1-Av1', b'ActualValue',
0, 1625831988, 3600, 1., 76, 1., b'', 98306, 4, b'', 0),
(1, b'O000_001_001_003_0000004c__1', 65795, 76, b'VolHdf5:H1-Av2', b'ActualValue',
0, 1625831988, 3600, 1., 76, 1., b'', 98306, 4, b'', 0)
...
>>> list(f['Tables']['O000_001_001_003_0000004a__0']['Data'])
[(1625835966, 0, -93.87609), (1625835967, 0, -91.52528), (1625835968, 0, -88.812),
(1625835969, 0, -85.74749), (1625835970, 0, -82.343864), (1625835971, 0, -78.61555),
(1625835972, 0, -74.57546), (1625835973, 0, -70.24045), (1625835974, 0, -65.627655),
...

Databases 23

7 Extract history data

Here some examples are shown on how to extract an display history data.

7.1 Xtt

The History method in Xtt for an object will display a curve window with the process
history. The History method is activated from

- the popup menu for the object.
- the tool panel in the object graph.
- the menu in the object graph.
- the Xtt command 'open history'.

The curve window can also be opened with the 'Open Graph' method for a SevHist object,
or the 'Open Graph' method in the item tree.

Extract history data 24

7.2 Ge graph

The SevHist component in the Ge editor is found under Analog/SevHist in the palette.
The component can display two history curves. It can be configured i two ways, either
it's connected to SevHist objects or the object identity for the history is suppled.
If the graph should be opened from a sev server node the second alternative has to be
used. If it's only going to be viewed on operator and process stations, the first
alternative can be used.

7.3 Multivariate Analyser

The Multivariate Analyser can read history for a number of items and display curves,
scatterplots, create models with linear regression and neural networks etc.

See the Multivariate Analyser chapter below.

7.4 Event Analyser

The Event Analyser read the history for alarms and events and display statistics and
curves.

See the Alarm and Event Analyser chapter below.

7.5 Python

The ProviewR Python runtime module, pwrrt, contains functions to fetch history
data from a sev server.

pwrrt can be execute on a node that has QCom contact to the history server.

Example
pwrrt.getSevItemData() fetches history for one attribute. It returns a tuple
with three elements, number of samples, a tuple with values and a tuple with times.

Extract history data 25

import pandas as pd
from datetime import datetime
import pwrrt

pwrrt.init("appl")

result = pwrrt.getSevItemData('localhost', '_O0.254.254.204:68',
	'ActualValue', '00:02:00', 'now', 1000)
for i in range(result[0]):
 print(i, str(result[2][i])[:22], result[1][i])

Example
pwrrt.getSevItemsDataFrame() can request history for several attributes, and
returns the history in a structure that can be inserted into a pandas frame.
The first column contains the time, and the other columns the attribute values.

import pandas as pd
import pwrrt

pwrrt.init("appl")

oidlist = []
attrlist = []
isobjectlist = []

Append first attribute
oidlist.append('_O0.254.254.204:68')
attrlist.append('ActualValue')
isobjectlist.append(0)

Append second attribute
oidlist.append('_O0.254.254.204:69')
attrlist.append('ActualValue')
isobjectlist.append(0)

result = pwrrt.getSevItemsDataFrame('localhost', oidlist, attrlist,
	isobjectlist, '00:02:00', 'now', 0.5, 1000)
columns = ('time', 'A1', 'A2')
data = pd.DataFrame(data=result)
data.columns = columns
print(data)

7.6 Mqtt server

Mqtt server in ProviewR makes is possible to retrieve history data on any
platform that has implemented the MQTT client.

The server replies to requests with different actions. The "history" action
requests history data for an attribute, and the "eventhist" action request
alarm and event history.

Example
This is a code example in Python with the MQTT client module python3-paho-mqtt.

Extract history data 26

History is fetched from the local MQTT server, topic 'proviewr/server'.
The reply is requested to be sent to topic 'repl/history', and the request
is to fetch history data for the attribute H1-Av1.ActualValue for the
last 15 minutes.

#!/usr/bin/python3
#
import paho.mqtt.client as mqtt
import sys
import time
from datetime import datetime
import json
import matplotlib.pyplot as plt
from datetime import datetime

def on_message(client, userdata, message):
 data = json.loads(str(message.payload.decode("utf-8")))

 # Convert time strings to datetime objects
 t = []
 for dt in data['time']:
 t.append(datetime.strptime(dt+'0000', '%d-%b-%Y %H:%M:%S.%f'))

 # Plot the curve, use drawstyle='steps-pre' for digital signals
 plt.plot(t, data['values'], label='Diff')
 plt.show()

Connect to MQTT server
client = mqtt.Client('Aristotle')
client.username_pw_set('pwrp','pwrp')
client.on_message = on_message
client.connect('localhost')

Subscribe to reply
client.subscribe("repl/history", 1)

Send history request
client.publish('proviewr/server', '{"action":"history",' \\
'"reply":"repl/history","server":"localhost","object":"H1-Av1",' \\
'"attribute":"ActualValue","from":"0:15:0","to":"now","maxrows":2000}')

for i in range (0, 3):
 print("Loop");
 client.loop_start()
 time.sleep(1)
 client.loop_stop()

Extract history data 27

8 Multivariate analyzer

With multivariate analyzer it is possible to view and analyze process history data and
logged data. It is also possible to linearize and transform the data and apply machine
learning tools as linear regression and neural networks that can be used in models and
MPC controllers.

8.1 Dataset

A dataset contains data ordered in columns and rows. The first column is the sample time,
and the next columns contains measured data for process variables. The data can be fetch
from a sev server, generated by the Xtt logging function or read from a csv-file.

Fig Dataset

Sev server

Data is fetch from a sev sever from File/Import from server in the menu. The server host
name and an optional item filter is supplied. The items that matches the filter are then
displayed and items that should be part of the dataset can be selected. Finally start
and end time is entered and the data is fetched and inserted into the dataset.

Multivariate analyzer 28

Fig Fetch data from sev server

Xtt logging

Parameters are collected and inserted into a logging entry, and to get the correct time
format, 'Format' is set to 1. When the logging is executed, the analyzer can be opened
from the 'Analyze' button in the logging entry.

Multivariate analyzer 29

Fig Xtt logging

csv file

Data can be read from csv files with format displayed below. The first row is a header
row with 'Time' and the name of each parameter. The next rows contains the time and the
parameter values at this time. The file is opened from File/Open in the menu.

Time,H78-TemperatureControl3-ZonTemp1.Value.ActualValue, H78-TemperatureControl3-
Power.ActualValue, H78-TemperatureControl3-ZonTemp0.Value.ActualValue, H78-Tempera
tureControl3-ZonTemp2.Value.ActualValue, H78-TemperatureControl3-EnvTemp.Value.Ac
tualValue
2019-05-13 09:25:16.11, 130.500320, 0.000032, 190.000000, 180.000000, 21.500000
2019-05-13 09:25:16.62, 130.500320, 0.000032, 190.000000, 180.000000, 21.500000
2019-05-13 09:25:17.12, 130.500320, 0.000032, 190.000000, 180.000000, 21.500000
2019-05-13 09:25:17.62, 130.500320, 0.000032, 190.000000, 180.000000, 21.500000
2019-05-13 09:25:18.12, 130.500320, 0.000032, 190.000000, 180.000000, 21.500000
...

8.2 Plots

A number of different plots can be made, for example scatterplot that shows the
relationship between two columns, or correlation heatmap that displays the correlation
between columns with colors. Dark red is high correlation and dark blue high negative
correlation while light tones are low correlation.

Multivariate analyzer 30

Fig Plot

Fig Scatterplot

Multivariate analyzer 31

Fig Correlation heatmap

8.3 Edit data

The dataset can be edited with a number of functions
- Split will split the dataset into two datasets.
- Clip will pick out a portion of the dataset.
- Join will concatenate two datasets.
- Multiply will create a dataset where the current set is repeated a number of times.
- Move up and down will change the order of the columns.

8.4 Transform data

Creating models with Linear regression requires that the columns in the dataset have
linear dependencies. Often this is not the case. The level in a cylinder tank for example
has not a linear relationship to the in and out flow, but to the integral of the in and
out flow. After an integration of the flow columns there will be a linear relationship
and the linear regression can be performed.

Convert column

There are a number of functions to transform the data of a column
- Norm. Not yet implemented.
- Square. Calculate the square of each row.
- Squareroot. Take the square root of each value.
- Exp. Exponential function.
- Log. Logarithmic function.
- Integral. Time integral.
- Derivate. Time derivate.
- Curve. Linear interpolation from a table specified in a csv file with data points, eg
	0,0
	30,10
	70,90

Multivariate analyzer 32

	100,100

- Shift. Values in the column will be shifted forward or backward. The number of positions the values will be shifted are specified. Positive value will shift forwards and negative backwards.

Fig Convert column alternatives

Add column

Add column will in most cases transform the data of one or two columns and put the
transformed data in a new column.

- Copy. Make a copy of the selected column.
- Norm. Not yet implemented.
- Square. Calculate the square of each row.
- Squareroot. Take the square root of each value.
- Exp. Exponential function.
- Log. Logarithmic function.
- Integral. Time integral.
- Derivate. Time derivate.
- Add. Add the two selected columns.
- Sub. Subtract between two selected columns. The order of the columns in the dataset
 is of importance here. The lower positioned column will be subtracted from the higher
 positioned column.
- Multiply. Multiply the two selected columns.
- Divide. Division of the two selected columns. The higher positioned columns will be
 divided by the lower positioned.
- Curve. Linear interpolation from a table specified in a csv file.
- Constant. Will create a column where all rows has the specified value.
- Shift. Values in the column will be shifted forward or backward.

Multivariate analyzer 33

Fig Add column alternatives

Formula

The transformation of a dataset can contain several steps, and when the transformation is
finished, the sequence can be stored as a formula and then be applied on other samplings
of the same parameters. The formula is saved from 'File/Save Formula' in the menu, and
applied from 'File/Apply Formula'.

8.5 Linear regression

Linear regression will create a model where one parameter, y, can be calculated from a
number of input values x1 - xn. y is supposed to have linear dependencies of the input
values, and the formula is

y = a0 + a1 * x1 + a2 * x2 + ... + an * xn

where a0, a1, ..., an will be calculated.

If the dependencies are not linear they first have to be linearized with the
transformation tools described above. When the model is used in runtime, the process
values have to go through the same transformation before they are used in the regression
model.

Lasso and Rigde regression are variants of linear regression that are also implemented.

Multivariate analyzer 34

Fig Linear regression

8.6 MLP regressor

MLP (Multi Level Perceptron) is a neural network with an input layer, a number of hidden
layers and an output layer. Each node in the hidden and output layers is a neuron that
uses a nonlinear activation function. The MLP uses a learning technique called
backpropagation.

Before the the training can start, setting for the MLP like number of hidden layers and
layer sizes, activation function etc has to be set.

Multivariate analyzer 35

Fig MLP regressor settings

From File/Create Model in the menu, the training is started. When it's finished, the
score is displayed and the model values are plotted with the process values. The model
can be written to file with File/Export Model and then used by a MPC controller or model
object.

Fig Training result

Multivariate analyzer 36

9 Alarm and event analyser

The alarm and event analyzer can fetch alarm from the sev server, the eventlog or
eventlist, and display statistics and plots over the alarm situation. A number of filter
functions are available to pick out event of a specific type or priority, or show event
from a specific sup object.

Fig Alarm and event analyser

Example of plots are the 'Event frequency histogram' that show the most frequent alarms,
and 'Not returned alarms' that shows the number for concurrent alarms as a function time.

Alarm and event analyser 37

Fig Event frequency histogram

Fig Not return alarms

Alarm and event analyser 38

10 Storage station configuration

A storage station is generated as a process or operator station by installing the pwrrt
package.

Communicaton with process stations

A storage station can serve a plant with several process stations that belongs to different
projects with different version. For this reason the storage station normally doesn't have
nethandler connections but QCom only connections.

This is configured by creating FriendNodeConfig objects for all nodes that the storage
station should have contact with, and set QComOnly in Connection. If the storage station
is placed in a project with process stations, you set QComAutoConnectDisable in the BusConfig
object. Then the links between nodes in the projects are configured with FriendNodeConfig objects.

Upgrading

Note when upgrading sev station from versions before 5.8
- The pwrsev package is discontinued since V5.8.0 and the pwrrt package should be used instead.
- The node should be configured with a NodeConfig object instead of SevNodeConfig.
- The root volume should be configured with a RootVolumeConfig object and edited.

Storage station configuration 39

	
	
	Introduction
	Process data
	Client
	Server

	Configuration
	SevHist
	SevHistObject
	Server threads
	Deadband
	Deadband with linear regression
	Event triggered storage
	Meanvalue calculation of stored signals
	Item tree
	Mounting of the item tree
	Refer to data in the item tree
	Plc programming
	Sev export

	Internal database structure.
	Databases
	MariaDB/MySQL
	Sqlite
	HDF5

	Extract history data
	Xtt
	Ge graph
	Multivariate Analyser
	Event Analyser
	Python
	Mqtt server

	Multivariate analyzer
	Dataset
	Plots
	Edit data
	Transform data
	Linear regression
	MLP regressor

	Alarm and event analyser
	Storage station configuration

